Green synthesis of chitosan/silver nanocomposite using kaempferol for triple negative breast cancer therapy and antibacterial activity

The synthesis of polymer-encapsulated metal nanoparticles is a growing field of area due to their long-term uses in the development of new technologies. The present study describes the synthesis of chitosan/silver nanocomposite using kaempferol for anticancer and bactericidal activity. The formation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research 2023-12, Vol.238, p.117109-117109, Article 117109
Hauptverfasser: Bharathi, Devaraj, Ranjithkumar, Rajamani, Nandagopal, Jaya Ganesh Thiruvengadam, Djearamane, Sinouvassane, Lee, Jintae, Wong, Ling Shing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The synthesis of polymer-encapsulated metal nanoparticles is a growing field of area due to their long-term uses in the development of new technologies. The present study describes the synthesis of chitosan/silver nanocomposite using kaempferol for anticancer and bactericidal activity. The formation of Kf-CS/Ag nanocomposite was confirmed by the development of a brown color and UV-absorbance around 438 nm. The IR study was utilized to determine the existence of Kf and CS in the synthesized nanocomposite. TEM analysis demonstrated that the synthesized nanocomposite have a predominantly uniform spherical shape and size ranges 7–10 nm. EDX spectrum showed the existence of Ag, C, and N elements in the nanocomposite material. Further, Kf-CS/Ag nanocomposite exhibited potential in vitro inhibitory property against triple-negative breast cancer (TNBC) cells and their IC50 values was found to be 53 μg/mL. Moreover, fluorescent assays such as DAPI and AO/EtBr confirmed the apoptosis induction ability of Kf-CS/Ag nanocomposite in MDA-MB-231 cells. The synthesized Kf-CS/Ag nanocomposite showed significant and dose-depended antibacterial property against S. aureus and P. aeruginosa. Thus, the obtained findings demonstrated that the synthesized nanocomposite can be potentially used to improve human health as biocidal nanocomposite in biomedical sectors. •A nanocomposite based on silver nanoparticles and chitosan was synthesized.•Kaempferol-loaded CS/Ag nanocomposite can be used effectively for cancer treatment, especially breast cancer.•Significant antibacterial activity of nanocomposite against S. aureus and P. aeruginosa.
ISSN:0013-9351
1096-0953
DOI:10.1016/j.envres.2023.117109