Stimuli-Responsive Ion Adsorbents for Sustainable Separation Applications

Stimuli-responsive ion absorbents (SRIAs) with reversible ion adsorption and desorption properties have recently attracted immense attention due to their outstanding functionalities for sustainable separation applications. Over the past decade, a series of SRIAs that respond to single or multiple ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2023-09, Vol.17 (18), p.17699-17720
Hauptverfasser: Li, Nicole, Hou, Jue, Ou, Ranwen, Yeo, Leslie, Choudhury, Namita Roy, Zhang, Huacheng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stimuli-responsive ion absorbents (SRIAs) with reversible ion adsorption and desorption properties have recently attracted immense attention due to their outstanding functionalities for sustainable separation applications. Over the past decade, a series of SRIAs that respond to single or multiple external stimuli (e.g., pH, gas, temperature, light, magnetic, and voltage) have been reported to achieve excellent ion adsorption capacity and selectivity while simultaneously allowing for their reusability. In contrast to traditional adsorbents that are mainly regenerated through chemical additives, SRIAs allow for reduced chemical and even chemical-free regeneration capacities, thereby enabling environmentally friendly and energy-efficient separation technologies. In this review, we systematically summarize the materials and strategies reported to date for synthesizing single-, dual-, and multiresponsive ion adsorbents. Following a discourse on the fundamental mechanisms that govern their adsorption and desorption under various external stimuli, we provide a concise discussion of the regeneration capacity and application of these responsive ion adsorbents for sustainable water desalination, toxic ion removal, and valuable ion extract and recovery. Finally, we discuss the challenges in developing and deploying these promising multifunctional responsive ion adsorbents together with strategies to overcome these limitations and provide prospects for their future.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.3c04942