Material decomposition using dual-energy CT with unsupervised learning

Material decomposition (MD) is an application of dual-energy computed tomography (DECT) that decomposes DECT images into specific material images. However, the direct inversion method used in MD often amplifies noise in the decomposed material images, resulting in lower image quality. To address thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Australasian physical & engineering sciences in medicine 2023-12, Vol.46 (4), p.1607-1617
Hauptverfasser: Chang, Hui-Yu, Liu, Chi-Kuang, Huang, Hsuan-Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Material decomposition (MD) is an application of dual-energy computed tomography (DECT) that decomposes DECT images into specific material images. However, the direct inversion method used in MD often amplifies noise in the decomposed material images, resulting in lower image quality. To address this issue, we propose an image-domain MD method based on the concept of deep image prior (DIP). DIP is an unsupervised learning method that can perform different tasks without using a large training dataset with known targets (i.e., basis material images). We retrospectively recruited patients who underwent non-contrast brain DECT scans and investigated the feasibility of using the proposed DIP-based method to decompose DECT images into two (i.e., bone and soft tissue) and three (i.e., bone, soft tissue, and fat) basis materials. We evaluated the decomposed material images in terms of signal-to-noise ratio (SNR) and modulation transfer function (MTF). The proposed DIP-based method showed greater improvement in SNR in the decomposed soft-tissue images compared to the direct inversion method and the iterative method. Moreover, the proposed method produced similar MTF curves in both two- and three-material decompositions. Additionally, the proposed DIP-based method demonstrated better separation ability than the other two studied methods in the case of three-material decomposition. Our results suggest that the proposed DIP-based method is capable of unsupervisedly generating high-quality basis material images from DECT images.
ISSN:2662-4729
0158-9938
2662-4737
1879-5447
DOI:10.1007/s13246-023-01323-7