Increasing load carriage and running speed differentially affect the magnitude, variability and coordination patterns of muscle forces
The study aims to investigate the effects of different loads and speed during running on inter- and intra-individual muscle force amplitudes, variabilities and coordination patterns. Nine healthy participants ran on an instrumentalized treadmill with an empty weight vest at two velocities (2.6 m/s a...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanics 2023-10, Vol.159, p.111794-111794, Article 111794 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The study aims to investigate the effects of different loads and speed during running on inter- and intra-individual muscle force amplitudes, variabilities and coordination patterns. Nine healthy participants ran on an instrumentalized treadmill with an empty weight vest at two velocities (2.6 m/s and 3.3 m/s) or while carrying three different loads (4.5, 9.1, 13.6 kg) at 2.6 m/s while kinematics and kinetics were synchronously recorded. The major lower limb muscle forces were estimated using a musculoskeletal model. Muscle force amplitudes and variability, as well as coordination patterns were compared at the group and at the individual level using respectively statistical parametric mapping and covariance matrices combined with multidimensional scaling. Increasing the speed or the load during running increased most of the muscle force amplitudes (p |
---|---|
ISSN: | 0021-9290 1873-2380 |
DOI: | 10.1016/j.jbiomech.2023.111794 |