Towards functional noninvasive imaging of excitable tissues inside the human body using focused microwave radiometry

Focused microwave radiometry, aiming mainly in clinical applications at measuring temperature distributions inside the human body, may provide the capability of detecting electrical conductivity variations at microwave frequencies of excitable cell clusters, such as in the case of brain tissues. A n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2004-08, Vol.52 (8), p.1898-1908
Hauptverfasser: Karanasiou, I.S., Uzunoglu, N.K., Papageorgiou, C.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Focused microwave radiometry, aiming mainly in clinical applications at measuring temperature distributions inside the human body, may provide the capability of detecting electrical conductivity variations at microwave frequencies of excitable cell clusters, such as in the case of brain tissues. A novel microwave radiometric system, including an ellipsoidal conductive wall cavity, which provides the required beamforming and focusing, is developed for the imaging of biological tissues via contactless measurements. The measurement is realized by placing the human head in the region of the first focus and collecting the radiation converged at the second by an almost isotropic dipole antenna connected to a sensitive radiometer operating at 3.5 GHz. In order to compute the focusing properties of the ellipsoidal reflector, an accurate electromagnetic numerical analysis is developed using a semianalytical method. The experimental part of this study focuses on measurements of activation of the primary somatosensory (SI) brain area, elicited during the application of the cold pressor test, a standard experimental condition inducing pain. Analysis of the measured data from 16 healthy subjects suggests that this methodology may be able to pick up activation of the SI during the pain conditions as compared with the nonpainful control conditions. Future research is needed in order to elucidate all the interacting factors involved in the interpretation of the presented results. Finally, potential limitations to the generalization of our results and strategies to improve the system's response are discussed.
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2004.831999