Nonsense-mediated mRNA decay suppresses injury-induced muscle regeneration via inhibiting MyoD transcriptional activity

Skeletal muscle regeneration is a crucial physiological process that occurs in response to injury or disease. As an important transcriptome surveillance system that regulates tissue development, the role of nonsense-mediated mRNA decay (NMD) in muscle regeneration remains unclear. Here, we found tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 2023-11, Vol.238 (11), p.2638-2650
Hauptverfasser: Tan, Yanjie, Zhang, Jing, Jin, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Skeletal muscle regeneration is a crucial physiological process that occurs in response to injury or disease. As an important transcriptome surveillance system that regulates tissue development, the role of nonsense-mediated mRNA decay (NMD) in muscle regeneration remains unclear. Here, we found that NMD inhibits myoblast differentiation by targeting the phosphoinositide-3-kinase regulatory subunit 5 gene, which leads to the suppression of the transcriptional activity of myogenic differentiation (MyoD), a key regulator of myoblast differentiation. This disruption of MyoD transcriptional activity subsequently affects the expression levels of myogenin and myosin heavy chain, crucial markers of myoblast differentiation. Additionally, through up-frameshift protein 1 knockdown experiments, we observed that inhibiting NMD can accelerate muscle regeneration in vivo. These findings highlight the potential of NMD as a novel therapeutic target for the treatment of muscle-related injuries and diseases.
ISSN:0021-9541
1097-4652
DOI:10.1002/jcp.31118