Escherichia coli infection mediates pyroptosis via activating p53-p21 pathway-regulated apoptosis and cell cycle arrest in bovine mammary epithelial cells

Escherichia coli (E. coli) is a major environmental pathogen that causes mammary tissue damage and cell death, which results in substantial economic losses. Pyroptosis, a novel form of programmed cell death characterized by DNA fragmentation, chromatin condensation, cell swelling and leakage of cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbial pathogenesis 2023-11, Vol.184, p.106338-106338, Article 106338
Hauptverfasser: Zhuang, Cuicui, Zhao, Jinhui, Zhang, Shiyao, Shahid, Muhammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Escherichia coli (E. coli) is a major environmental pathogen that causes mammary tissue damage and cell death, which results in substantial economic losses. Pyroptosis, a novel form of programmed cell death characterized by DNA fragmentation, chromatin condensation, cell swelling and leakage of cell contents, often occurs after inflammatory apoptotic pathways activation. Our objective was to investigate the intraction between E. coli infection and bovine mammary epithelial cells (bMECs) with pyroptosis and to explore the underlying regulatory mechanism. bMECs were infected with E. coli for 6 h. Lactic dehydrogenase activities, interleukin (IL)-10, IL-1β, IL-18 and tumor necrosis factor-α concentrations, total apoptosis indexes, and protein expressions of P-cdc25c, P-CDK1, cleaved caspase 9, cleaved caspase 3, cleaved PARP, P–NF-κB, NLRP3, ASC, caspase 1, gasdermin D N-terminal, IL-1β and IL-18 were significantly increased in E. coli infected bMECs. Whereas, cell membrane potential, protein levels of cdc25c, CDK1, cyclin B1, and Bcl-2/Bax level were markedly reduced. Furthermore, Ac-DEVD-CHO (specific inhibitor of apoptosis) dramatically suppressed pyroptosis in bMECs. Moreover, expressions of p53 and p21 promptly improved after E. coli infection, however, Pifithrin-α (specific inhibitor of p53) inhibited p53-p21 pathway, apoptosis, cell cycle arrest and pyroptosis. These results elaborated that E. coli infection of bMECs induced pyroptosis through activating the p53-p21 pathway-mediated apoptosis and cell cycle arrest. Taken together, inhibition of pyroptosis via suppressing of p53-p21 pathway may be an effective therapeutic approach for treating E. coli-induced mastitis, offering efficient theoretical support for the protection and treatment of bovine mastitis. •E. coli infection caused apoptosis through p53-p21 pathway in bMECs.•E. coli infection arrested cell cycle of bMECs via p53-p21 pathway.•E. coli induced pyroptosis through activation of apoptosis and cell cycle arrest.
ISSN:0882-4010
1096-1208
DOI:10.1016/j.micpath.2023.106338