Preparation and investigation of a novel antibacterial collagen-based material loaded with gentamicin following surface modification with citric acid for corneal tissue engineering

Corneal disease is an important clinical problem that affects millions of blind people and keratoplasty is currently the most successful treatment for corneal blindness. Unfortunately, there is a very high risk of bacterial infection during corneal transplantation. In this study, we proposed a novel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2023-12, Vol.253, p.126791-126791, Article 126791
Hauptverfasser: Liu, Yang, Liu, Huiyu, Zhang, Chuanlei, Kong, Yanhui, Chen, Cheng, Gao, Wenyu, Xi, Xiaowei, Deng, Linhong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Corneal disease is an important clinical problem that affects millions of blind people and keratoplasty is currently the most successful treatment for corneal blindness. Unfortunately, there is a very high risk of bacterial infection during corneal transplantation. In this study, we proposed a novel synthetic collagen-based film for corneal therapy, and we effectively incorporated aminoglycoside gentamicin molecules onto the surface of the collagen film. We anticipate that this collagen-based substance will be antimicrobial and repair corneal tissue damage. Three steps were used to create this gentamicin-modified carboxylated collagen film, including: (i) Cross-link the collagen molecules with 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide and n-hydroxysuccinimide to create a collagen (Col) film. (ii) Citric acid was used to modify the Col film's surface in order to increase the number of carboxyl groups there (ColCA). (iii) Gentamicin molecules were grafted onto the surface of ColCA film by forming amide bonds (ColCA-GM). We discovered that this ColCA-GM film has good physicochemical properties and excellent biocompatibility. Furthermore, it was demonstrated that treating collagen films with citric acid significantly improved the antibacterial properties of ColCA-GM film. The outcomes point to a variety of potential applications for this novel film in corneal tissue engineering.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2023.126791