A large-scale neurocomputational model of spatial cognition integrating memory with vision

We introduce a large-scale neurocomputational model of spatial cognition called ’Spacecog’, which integrates recent findings from mechanistic models of visual and spatial perception. As a high-level cognitive ability, spatial cognition requires the processing of behaviourally relevant features in co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2023-10, Vol.167, p.473-488
Hauptverfasser: Burkhardt, Micha, Bergelt, Julia, Gönner, Lorenz, Dinkelbach, Helge Ülo, Beuth, Frederik, Schwarz, Alex, Bicanski, Andrej, Burgess, Neil, Hamker, Fred H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a large-scale neurocomputational model of spatial cognition called ’Spacecog’, which integrates recent findings from mechanistic models of visual and spatial perception. As a high-level cognitive ability, spatial cognition requires the processing of behaviourally relevant features in complex environments and, importantly, the updating of this information during processes of eye and body movement. The Spacecog model achieves this by interfacing spatial memory and imagery with mechanisms of object localisation, saccade execution, and attention through coordinate transformations in parietal areas of the brain. We evaluate the model in a realistic virtual environment where our neurocognitive model steers an agent to perform complex visuospatial tasks. Our modelling approach opens up new possibilities in the assessment of neuropsychological data and human spatial cognition. •Novel, systems-level approach integrates vision and spatial memory/imagery.•Integration of multiple brain areas gives rise to key aspects of spatial cognition.•Interfacing memory and vision through parietal areas improves object localisation.•Virtual environment opens up new options for the assessment of computational models.
ISSN:0893-6080
1879-2782
DOI:10.1016/j.neunet.2023.08.034