Zwitterionic polymer on silicone implants inhibits the bacteria-driven pathogenic mechanism and progress of breast implant-associated anaplastic large cell lymphoma

Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) occurs in the capsule surrounding breast implants. Malignant transformation of T cells by bacteria-driven chronic inflammation may be underlying BIA-ALCL mechanism. Here, we covalently grafted 2-methacryloyloxyethyl phosphorylcholin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2023-11, Vol.171, p.378-391
Hauptverfasser: Kim, Jungah, Kang, Sunah, Choi, Min-Ha, Park, Sohyun, Nam, So Hee, Park, Ji-Ung, Lee, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) occurs in the capsule surrounding breast implants. Malignant transformation of T cells by bacteria-driven chronic inflammation may be underlying BIA-ALCL mechanism. Here, we covalently grafted 2-methacryloyloxyethyl phosphorylcholine (MPC)-based polymers on a silicone surface and examined its effects against BIA-ALCL pathogenesis. MPC grafting strongly inhibited the adhesion of bacteria and bacteria-causing inflammation. Additionally, cancer T cell proliferation and capsule-derived fibroblast-cancer cell communication were effectively inhibited by MPC grafting. We further demonstrated the effect of MPC against the immune responses causing BIA-ALCL around human silicone implants in micro-pigs. Finally, we generated a xenograft anaplastic T cell lymphoma mouse model around the silicone implants and demonstrated that MPC grafting could effectively inhibit the lymphoma progression. This study is the first to show that bacteria-driven induction and progression of BIA-ALCL can be effectively inhibited by surface modification of implants. Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a major concern in the field of plastic and reconstructive surgery. In this study, we demonstrate strong inhibitory effect of zwitterionic polymer grafting on BIA-ALCL pathogenesis and progression, induced by bacterial infection and inflammation, both in vitro and in vivo. This study provides a molecular basis for the development of novel breast implants that can prevent various potential complications such as excessive capsular contracture, breast implant illness, and BIA-ALCL incidence, as well as for expanding the biomedical applications of zwitterionic polymers. [Display omitted]
ISSN:1742-7061
1878-7568
DOI:10.1016/j.actbio.2023.09.003