A Self-Assembled Organic Probe with Activatable Near-Infrared Fluoro-Photoacoustic Signals for In Vivo Evaluation of the Radiotherapy Effect

Early evaluation and prediction of the radiotherapy effect against tumors are crucial for effective radiotherapy management. The clinical approach generally relies on anatomical changes in tumor size, which is unable to promptly reflect clinical outcomes and guide a timely adjustment of therapy regi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2023-09, Vol.95 (37), p.13984-13991
Hauptverfasser: An, Yi, Gu, Wei, Miao, Minqian, Miao, Jia, Zhou, Hui, Zhao, Min, Jiang, Yue, Li, Qing, Miao, Qingqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Early evaluation and prediction of the radiotherapy effect against tumors are crucial for effective radiotherapy management. The clinical approach generally relies on anatomical changes in tumor size, which is unable to promptly reflect clinical outcomes and guide a timely adjustment of therapy regimens. To resolve it, we herein develop a self-assembled organic probe (dCyFFs) with caspase-3 (Casp-3)-activatable near-infrared (NIR) fluoro-photoacoustic signals for early evaluation and prediction of radiotherapy efficacy. The probe contains an NIR dye that is caged with a Casp-3-cleavable substrate and linked to a self-assembly initiating moiety. In the presence of Casp-3, the self-assembled probe can undergo secondary assembly into larger nanoparticles and simultaneously activate NIR fluoro-photoacoustic signals. Such a design endows a superior real-time longitudinal imaging capability of Casp-3 generated by radiotherapy as it facilitates the passive accumulation of the probe into tumors, activated signal output with enhanced optical stability, and retention capacity relative to a nonassembling small molecular control probe (dCy). As a result, the probe enables precise prediction of the radiotherapy effect as early as 3 h posttherapy, which is further evidenced by the changes in tumor size after radiotherapy. Overall, the probe with Casp-3-mediated secondary assembly along with activatable NIR fluoro-photoacoustic signals holds great potential for evaluating and predicting the response of radiotherapy in a timely manner, which can also be explored for utilization in other therapeutic modalities.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.3c02578