Simulated generation of evoked potentials components using networks with distinct excitatory and inhibitory neurons
Long latency evoked potentials (EPs) are electrical potentials related to brain information processing mechanisms. A three-layered neurophysiologically based artificial neural network model is presented whose neurons obey to Dale's law. The first two layers of the network can memorize and recal...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2000-09, Vol.4 (3), p.238-246 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 246 |
---|---|
container_issue | 3 |
container_start_page | 238 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 4 |
creator | Ventouras, E. Uzunoglu, N.K. Koutsouris, D. Papageorgiou, C. Rabavilas, A. Stefanis, C. |
description | Long latency evoked potentials (EPs) are electrical potentials related to brain information processing mechanisms. A three-layered neurophysiologically based artificial neural network model is presented whose neurons obey to Dale's law. The first two layers of the network can memorize and recall sparsely coded patterns, oscillating at biologically plausible frequencies. Excitatory low-pass filtering synapses, from the second to the third layer, create evoked current dipoles, when the network retrieves memories related to stimuli. Based on psychophysiological indications, simulated intracranial dipoles are straightforwardly transformed into long latency EP components such as N/sub 100/ and P/sub 300/ that match laboratory-measured scalp EPs. |
doi_str_mv | 10.1109/4233.870034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28620827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>870034</ieee_id><sourcerecordid>72326202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-25ace3de89801d07ae1348ecd1bb4e414cc42bc6a83fc9252a7d35bb653a4fdb3</originalsourceid><addsrcrecordid>eNqF0T1PHDEQBmArCspdIBVdisiiSIMW_LnrLRGCBAmJAqhXXnsWfHdrX2wvH_8ew52CREPlGfuZkawXoX1Kjigl7bFgnB-phhAuvqA5lVJVpWZfS01UWzVNQ2foe0oLQqiQlH9DszLHatmKOUrXbpxWOoPFd-Ah6uyCx2HA8BCW5XIdMvjs9CphE8Z18KVLeErO32EP-THEZcKPLt9j61J23mQMT8ZlnUN8xtpb7Py9691b62GKwac9tDOUhfBje-6i2_Ozm9O_1eXVn4vTk8vK8JrlikltgFtQrSLUkkYD5UKBsbTvBQgqjBGsN7VWfDAtk0w3lsu-ryXXYrA930W_N3vXMfybIOVudMnAaqU9hCl1DeOsZoR9CpkqTLGmwIMPcBGm6MsnOqUkEYIIXtDhBpkYUoowdOvoRh2fO0q618S618S6TWJF_9qunPoR7LvdRlTAzw1wAPD_eTv9AkVSm6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885044043</pqid></control><display><type>article</type><title>Simulated generation of evoked potentials components using networks with distinct excitatory and inhibitory neurons</title><source>IEEE Electronic Library (IEL)</source><creator>Ventouras, E. ; Uzunoglu, N.K. ; Koutsouris, D. ; Papageorgiou, C. ; Rabavilas, A. ; Stefanis, C.</creator><creatorcontrib>Ventouras, E. ; Uzunoglu, N.K. ; Koutsouris, D. ; Papageorgiou, C. ; Rabavilas, A. ; Stefanis, C.</creatorcontrib><description>Long latency evoked potentials (EPs) are electrical potentials related to brain information processing mechanisms. A three-layered neurophysiologically based artificial neural network model is presented whose neurons obey to Dale's law. The first two layers of the network can memorize and recall sparsely coded patterns, oscillating at biologically plausible frequencies. Excitatory low-pass filtering synapses, from the second to the third layer, create evoked current dipoles, when the network retrieves memories related to stimuli. Based on psychophysiological indications, simulated intracranial dipoles are straightforwardly transformed into long latency EP components such as N/sub 100/ and P/sub 300/ that match laboratory-measured scalp EPs.</description><identifier>ISSN: 1089-7771</identifier><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 1558-0032</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/4233.870034</identifier><identifier>PMID: 11026594</identifier><identifier>CODEN: ITIBFX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Biological information theory ; Biological system modeling ; Biomedical Engineering ; Brain modeling ; Delay ; Electric potential ; Evoked Potentials ; Frequency ; Humans ; Information processing ; Low pass filters ; Models, Neurological ; Nerve Net - physiology ; Neural Networks (Computer) ; Neurons</subject><ispartof>IEEE journal of biomedical and health informatics, 2000-09, Vol.4 (3), p.238-246</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-25ace3de89801d07ae1348ecd1bb4e414cc42bc6a83fc9252a7d35bb653a4fdb3</citedby><cites>FETCH-LOGICAL-c362t-25ace3de89801d07ae1348ecd1bb4e414cc42bc6a83fc9252a7d35bb653a4fdb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/870034$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/870034$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11026594$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ventouras, E.</creatorcontrib><creatorcontrib>Uzunoglu, N.K.</creatorcontrib><creatorcontrib>Koutsouris, D.</creatorcontrib><creatorcontrib>Papageorgiou, C.</creatorcontrib><creatorcontrib>Rabavilas, A.</creatorcontrib><creatorcontrib>Stefanis, C.</creatorcontrib><title>Simulated generation of evoked potentials components using networks with distinct excitatory and inhibitory neurons</title><title>IEEE journal of biomedical and health informatics</title><addtitle>TITB</addtitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><description>Long latency evoked potentials (EPs) are electrical potentials related to brain information processing mechanisms. A three-layered neurophysiologically based artificial neural network model is presented whose neurons obey to Dale's law. The first two layers of the network can memorize and recall sparsely coded patterns, oscillating at biologically plausible frequencies. Excitatory low-pass filtering synapses, from the second to the third layer, create evoked current dipoles, when the network retrieves memories related to stimuli. Based on psychophysiological indications, simulated intracranial dipoles are straightforwardly transformed into long latency EP components such as N/sub 100/ and P/sub 300/ that match laboratory-measured scalp EPs.</description><subject>Artificial neural networks</subject><subject>Biological information theory</subject><subject>Biological system modeling</subject><subject>Biomedical Engineering</subject><subject>Brain modeling</subject><subject>Delay</subject><subject>Electric potential</subject><subject>Evoked Potentials</subject><subject>Frequency</subject><subject>Humans</subject><subject>Information processing</subject><subject>Low pass filters</subject><subject>Models, Neurological</subject><subject>Nerve Net - physiology</subject><subject>Neural Networks (Computer)</subject><subject>Neurons</subject><issn>1089-7771</issn><issn>2168-2194</issn><issn>1558-0032</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0T1PHDEQBmArCspdIBVdisiiSIMW_LnrLRGCBAmJAqhXXnsWfHdrX2wvH_8ew52CREPlGfuZkawXoX1Kjigl7bFgnB-phhAuvqA5lVJVpWZfS01UWzVNQ2foe0oLQqiQlH9DszLHatmKOUrXbpxWOoPFd-Ah6uyCx2HA8BCW5XIdMvjs9CphE8Z18KVLeErO32EP-THEZcKPLt9j61J23mQMT8ZlnUN8xtpb7Py9691b62GKwac9tDOUhfBje-6i2_Ozm9O_1eXVn4vTk8vK8JrlikltgFtQrSLUkkYD5UKBsbTvBQgqjBGsN7VWfDAtk0w3lsu-ryXXYrA930W_N3vXMfybIOVudMnAaqU9hCl1DeOsZoR9CpkqTLGmwIMPcBGm6MsnOqUkEYIIXtDhBpkYUoowdOvoRh2fO0q618S618S6TWJF_9qunPoR7LvdRlTAzw1wAPD_eTv9AkVSm6A</recordid><startdate>20000901</startdate><enddate>20000901</enddate><creator>Ventouras, E.</creator><creator>Uzunoglu, N.K.</creator><creator>Koutsouris, D.</creator><creator>Papageorgiou, C.</creator><creator>Rabavilas, A.</creator><creator>Stefanis, C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20000901</creationdate><title>Simulated generation of evoked potentials components using networks with distinct excitatory and inhibitory neurons</title><author>Ventouras, E. ; Uzunoglu, N.K. ; Koutsouris, D. ; Papageorgiou, C. ; Rabavilas, A. ; Stefanis, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-25ace3de89801d07ae1348ecd1bb4e414cc42bc6a83fc9252a7d35bb653a4fdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Artificial neural networks</topic><topic>Biological information theory</topic><topic>Biological system modeling</topic><topic>Biomedical Engineering</topic><topic>Brain modeling</topic><topic>Delay</topic><topic>Electric potential</topic><topic>Evoked Potentials</topic><topic>Frequency</topic><topic>Humans</topic><topic>Information processing</topic><topic>Low pass filters</topic><topic>Models, Neurological</topic><topic>Nerve Net - physiology</topic><topic>Neural Networks (Computer)</topic><topic>Neurons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ventouras, E.</creatorcontrib><creatorcontrib>Uzunoglu, N.K.</creatorcontrib><creatorcontrib>Koutsouris, D.</creatorcontrib><creatorcontrib>Papageorgiou, C.</creatorcontrib><creatorcontrib>Rabavilas, A.</creatorcontrib><creatorcontrib>Stefanis, C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ventouras, E.</au><au>Uzunoglu, N.K.</au><au>Koutsouris, D.</au><au>Papageorgiou, C.</au><au>Rabavilas, A.</au><au>Stefanis, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulated generation of evoked potentials components using networks with distinct excitatory and inhibitory neurons</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>TITB</stitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><date>2000-09-01</date><risdate>2000</risdate><volume>4</volume><issue>3</issue><spage>238</spage><epage>246</epage><pages>238-246</pages><issn>1089-7771</issn><issn>2168-2194</issn><eissn>1558-0032</eissn><eissn>2168-2208</eissn><coden>ITIBFX</coden><abstract>Long latency evoked potentials (EPs) are electrical potentials related to brain information processing mechanisms. A three-layered neurophysiologically based artificial neural network model is presented whose neurons obey to Dale's law. The first two layers of the network can memorize and recall sparsely coded patterns, oscillating at biologically plausible frequencies. Excitatory low-pass filtering synapses, from the second to the third layer, create evoked current dipoles, when the network retrieves memories related to stimuli. Based on psychophysiological indications, simulated intracranial dipoles are straightforwardly transformed into long latency EP components such as N/sub 100/ and P/sub 300/ that match laboratory-measured scalp EPs.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>11026594</pmid><doi>10.1109/4233.870034</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7771 |
ispartof | IEEE journal of biomedical and health informatics, 2000-09, Vol.4 (3), p.238-246 |
issn | 1089-7771 2168-2194 1558-0032 2168-2208 |
language | eng |
recordid | cdi_proquest_miscellaneous_28620827 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Biological information theory Biological system modeling Biomedical Engineering Brain modeling Delay Electric potential Evoked Potentials Frequency Humans Information processing Low pass filters Models, Neurological Nerve Net - physiology Neural Networks (Computer) Neurons |
title | Simulated generation of evoked potentials components using networks with distinct excitatory and inhibitory neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A54%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulated%20generation%20of%20evoked%20potentials%20components%20using%20networks%20with%20distinct%20excitatory%20and%20inhibitory%20neurons&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Ventouras,%20E.&rft.date=2000-09-01&rft.volume=4&rft.issue=3&rft.spage=238&rft.epage=246&rft.pages=238-246&rft.issn=1089-7771&rft.eissn=1558-0032&rft.coden=ITIBFX&rft_id=info:doi/10.1109/4233.870034&rft_dat=%3Cproquest_RIE%3E72326202%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885044043&rft_id=info:pmid/11026594&rft_ieee_id=870034&rfr_iscdi=true |