Simulated generation of evoked potentials components using networks with distinct excitatory and inhibitory neurons
Long latency evoked potentials (EPs) are electrical potentials related to brain information processing mechanisms. A three-layered neurophysiologically based artificial neural network model is presented whose neurons obey to Dale's law. The first two layers of the network can memorize and recal...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2000-09, Vol.4 (3), p.238-246 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Long latency evoked potentials (EPs) are electrical potentials related to brain information processing mechanisms. A three-layered neurophysiologically based artificial neural network model is presented whose neurons obey to Dale's law. The first two layers of the network can memorize and recall sparsely coded patterns, oscillating at biologically plausible frequencies. Excitatory low-pass filtering synapses, from the second to the third layer, create evoked current dipoles, when the network retrieves memories related to stimuli. Based on psychophysiological indications, simulated intracranial dipoles are straightforwardly transformed into long latency EP components such as N/sub 100/ and P/sub 300/ that match laboratory-measured scalp EPs. |
---|---|
ISSN: | 1089-7771 2168-2194 1558-0032 2168-2208 |
DOI: | 10.1109/4233.870034 |