Trellis source codes designed by conjugate gradient optimization
Time-invariant trellis codes for stationary, ergodic, discrete-time sources are designed by unconstrained, nonlinear optimization of the performance in a simulated source encoding with the Viterbi algorithm. A nonderivative conjugate directions algorithm and a conjugate gradient algorithm with resta...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 1988-01, Vol.36 (1), p.1-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Time-invariant trellis codes for stationary, ergodic, discrete-time sources are designed by unconstrained, nonlinear optimization of the performance in a simulated source encoding with the Viterbi algorithm. A nonderivative conjugate directions algorithm and a conjugate gradient algorithm with restarts are applied to design low-constraint-length, unit-rate, binary codes for the memoryless Gaussian source. The latter algorithm is also used to design codes for the memoryless Laplacian source and a third-order autoregressive model for speech. Good codes are tabulated and compared to other known results on a performance versus complexity basis. Those for the Gaussian source are tested in a joint (tandem) trellis-coding system with known convolutional channel codes.< > |
---|---|
ISSN: | 0090-6778 1558-0857 |
DOI: | 10.1109/26.2723 |