Selecting inputs for modeling using normalized higher order statistics and independent component analysis

The problem of input variable selection is well known in the task of modeling real-world data. In this paper, we propose a novel model-free algorithm for input variable selection using independent component analysis and higher order cross statistics. Experimental results are given which indicate tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2001-05, Vol.12 (3), p.612-617
Hauptverfasser: Back, A.D., Trappenberg, T.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem of input variable selection is well known in the task of modeling real-world data. In this paper, we propose a novel model-free algorithm for input variable selection using independent component analysis and higher order cross statistics. Experimental results are given which indicate that the method is capable of giving reliable performance and that it outperforms other approaches when the inputs are dependent.
ISSN:1045-9227
2162-237X
1941-0093
2162-2388
DOI:10.1109/72.925564