Purification and Fractionation of Lignin via ALPHA: Liquid-Liquid Equilibrium for the Lignin-Acetic Acid-Water System

In order to effectively practice the Aqueous Lignin Purification with Hot Agents (ALPHA) process for lignin purification and fractionation, the temperatures and feed compositions where regions of liquid-liquid equilibrium (LLE) exist must be identified. To this end, pseudo-ternary phase diagrams for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2024-01, Vol.17 (1), p.e202300989-e202300989
Hauptverfasser: Agede, Oreoluwa, Thies, Mark C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to effectively practice the Aqueous Lignin Purification with Hot Agents (ALPHA) process for lignin purification and fractionation, the temperatures and feed compositions where regions of liquid-liquid equilibrium (LLE) exist must be identified. To this end, pseudo-ternary phase diagrams for the lignin-acetic acid-water system were mapped out at 45-95 °C and various solvent: feed lignin mass ratios (S : F). For a given temperature, the accompanying SL (solid-liquid), SLL (solid-liquid-liquid), and one-phase regions were also located. For the first time, ALPHA using acetic acid (AcOH)-water solution was applied to a lignin recovered via the commercial LignoBoost process. In addition to determining tie-line compositions for the two regions of LLE that were discovered, the distribution of lignin and key impurities (the latter can negatively impact lignin performance for materials applications) between the two liquid phases was also measured. As a representative example, lignin isolated in the lignin-rich phase was reduced 7x in metals and 4x in polysaccharides by using ALPHA with a feed solvent composition of 50-55 % AcOH and an S : F of 6 : 1, with said lignin being obtained at a yield of 50-70 % of the feed lignin and having a molecular weight triple that of the feed.
ISSN:1864-5631
1864-564X
DOI:10.1002/cssc.202300989