Modulating adsorption energy on nickel nitride-supported ruthenium nanoparticles through in-situ electrochemical activation for urea-assisted alkaline hydrogen production

The in-situ activation process alleviates the strong ruthenium-hydrogen and ruthenium-hydroxyl bonds, optimizing hydrogen and hydroxyl desorption energy. [Display omitted] •Partially oxidized Ru nanoparticles dispersed Ni3N nanosheet electrocatalyst was developed.•The in-situ electrochemical activat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2023-12, Vol.652, p.1665-1672
Hauptverfasser: Luo, Yuan Hao, Fu, Hong Chuan, Chen, Xiao Hui, Wang, Bing Jie, Yang, Bo, Li, Nian Bing, Luo, Hong Qun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The in-situ activation process alleviates the strong ruthenium-hydrogen and ruthenium-hydroxyl bonds, optimizing hydrogen and hydroxyl desorption energy. [Display omitted] •Partially oxidized Ru nanoparticles dispersed Ni3N nanosheet electrocatalyst was developed.•The in-situ electrochemical activation effectively promoted hydrogen evolution.•The controlled oxidation alleviates the strong Ru-H and Ru-OH bonds.•The catalysts show superior performance for HER and urea-assisted water splitting. The rational design of electrocatalysts with exceptional performance and durability for hydrogen production in alkaline medium is a formidable challenge. In this study, we have developed in-situ activated ruthenium nanoparticles dispersed on Ni3N nanosheets, forming a bifunctional electrocatalyst for hydrogen evolution and urea oxidation. The results of experimental analysis and theoretical calculations reveal that the enhanced hydrogen evolution reaction (HER) performance of O-Ru-Ni3N stems primarily from the optimized hydrogen adsorption and hydroxyl adsorption on Ru sites. The O-Ru-Ni3N on nickel foam (NF) electrode exhibits excellent HER performance, requiring only 29 mV to reach 10 mA cm−2 in an alkaline medium. Notably, when this O-Ru-Ni3N/NF catalyst is employed for both HER and urea oxidation reaction (UOR) to create an integrated H2 production system, a current density of 50 mA cm−2 can be generated at the cell voltage of 1.41 V. This report introduces an energy-efficient catalyst for hydrogen production and proposes a viable strategy for anodic activation in energy chemistry.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2023.08.154