Laws of taxation for multicellular organisms: The economics of sleep

In macro-public finance, the Ramsey rule (RR) concerns variable taxation to maximize social welfare and economic efficiency in a purely competitive monopolistic system. To extract tax revenue with the least loss of utility to the representative individual, RR dictates that optimal, proportionate tax...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioSystems 2023-10, Vol.232, p.105018-105018, Article 105018
1. Verfasser: Tozzi, Arturo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In macro-public finance, the Ramsey rule (RR) concerns variable taxation to maximize social welfare and economic efficiency in a purely competitive monopolistic system. To extract tax revenue with the least loss of utility to the representative individual, RR dictates that optimal, proportionate taxes should be such as to diminish in the same proportion the production of each commodity taxed. The sources of supply that are inelastic, i.e., necessities/utilities, must be taxed more. We hypothesize that the Ramsey's economical approach might provide a general mechanism to investigate far-flung biological issues, such as preys/predators dynamics, food restriction in ecological niches, local changes in blood flow in rival or complementary organs of multicellular organisms. In particular, RR suggests a quantifiable relationship between the physiological decrease in cortical spike frequency occurring during sleep and energy consumption. Since small decreases in spike frequency during sleep are correlated with large decreases in the amount of consumed ATP, the brain could be considered an inelastic commodity which can be “taxed” more than other organs, allowing the whole organism to spare energy. Shedding light on the energy budget of the central nervous system, RR improves our knowledge of cerebral perfusion during sensory-evoked responses and tissue hypoxia caused by decreased blood flow, suggesting that energy from outside can be provided to counteract brain ischemia. In sum, the economical approach provided by Ramsey stands for a useful methodological tool that could be used in biological contexts to investigate the dynamical correlations among different organs in multicellular organisms.
ISSN:0303-2647
1872-8324
DOI:10.1016/j.biosystems.2023.105018