Boosting the Proton‐coupled Electron Transfer via Fe−P Atomic Pair for Enhanced Electrochemical CO2 Reduction
Single‐atom catalysts exhibit superior CO2‐to‐CO catalytic activity, but poor kinetics of proton‐coupled electron transfer (PCET) steps still limit the overall performance toward the industrial scale. Here, we constructed a Fe−P atom paired catalyst onto nitrogen doped graphitic layer (Fe1/PNG) to a...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2023-10, Vol.62 (44), p.e202311550-e202311550 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Single‐atom catalysts exhibit superior CO2‐to‐CO catalytic activity, but poor kinetics of proton‐coupled electron transfer (PCET) steps still limit the overall performance toward the industrial scale. Here, we constructed a Fe−P atom paired catalyst onto nitrogen doped graphitic layer (Fe1/PNG) to accelerate PCET step. Fe1/PNG delivers an industrial CO current of 1 A with FECO over 90 % at 2.5 V in a membrane‐electrode assembly, overperforming the CO current of Fe1/NG by more than 300 %. We also decrypted the synergistic effects of the P atom in the Fe−P atom pair using operando techniques and density functional theory, revealing that the P atom provides additional adsorption sites for accelerating water dissociation, boosting the hydrogenation of CO2, and enhancing the activity of CO2 reduction. This atom‐pair catalytic strategy can modulate multiple reactants and intermediates to break through the inherent limitations of single‐atom catalysts. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.202311550 |