Boosting the Proton‐coupled Electron Transfer via Fe−P Atomic Pair for Enhanced Electrochemical CO2 Reduction

Single‐atom catalysts exhibit superior CO2‐to‐CO catalytic activity, but poor kinetics of proton‐coupled electron transfer (PCET) steps still limit the overall performance toward the industrial scale. Here, we constructed a Fe−P atom paired catalyst onto nitrogen doped graphitic layer (Fe1/PNG) to a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2023-10, Vol.62 (44), p.e202311550-e202311550
Hauptverfasser: Zhang, Qiao, Hsin Jung Tsai, Li, Fuhua, Wei, Zhiming, He, Qinye, Ding, Jie, Liu, Yuhang, Zih‐Yi Lin, Yang, Xiaoju, Chen, Zhaoyang, Hu, Fangxin, Yang, Xuan, Tang, Qing, Hong Bin Yang, Sung‐Fu Hung, Zhai, Yueming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Single‐atom catalysts exhibit superior CO2‐to‐CO catalytic activity, but poor kinetics of proton‐coupled electron transfer (PCET) steps still limit the overall performance toward the industrial scale. Here, we constructed a Fe−P atom paired catalyst onto nitrogen doped graphitic layer (Fe1/PNG) to accelerate PCET step. Fe1/PNG delivers an industrial CO current of 1 A with FECO over 90 % at 2.5 V in a membrane‐electrode assembly, overperforming the CO current of Fe1/NG by more than 300 %. We also decrypted the synergistic effects of the P atom in the Fe−P atom pair using operando techniques and density functional theory, revealing that the P atom provides additional adsorption sites for accelerating water dissociation, boosting the hydrogenation of CO2, and enhancing the activity of CO2 reduction. This atom‐pair catalytic strategy can modulate multiple reactants and intermediates to break through the inherent limitations of single‐atom catalysts.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.202311550