Scaling constraints imposed by self-heating in submicron SOI MOSFET's

The presence of a buried oxide layer in silicon causes enhanced self-heating in Silicon-On-Insulator (SOI) n-channel MOSFETs. The self-heating becomes more pronounced as device dimensions are reduced into the submicron regime because of increased electric field density and reduced silicon volume ava...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 1995-03, Vol.42 (3), p.489-496
Hauptverfasser: Dallmann, D.A., Shenai, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The presence of a buried oxide layer in silicon causes enhanced self-heating in Silicon-On-Insulator (SOI) n-channel MOSFETs. The self-heating becomes more pronounced as device dimensions are reduced into the submicron regime because of increased electric field density and reduced silicon volume available for heat removal. Two-dimensional numerical simulations are used to show that self-heating manifests itself in the form of degraded drive current due to mobility reduction and premature breakdown. The heat flow equation was consistently solved with the classical semiconductor equations to study the effect of power dissipation on carrier transport. The simulated temperature increases in the channel region are shown to be in close agreement with recently measured data. Numerical simulation results also demonstrated accelerated turn-on of the parasitic bipolar transistor due to self-heating. Simulation results were used to identify scaling constraints caused by the parasitic bipolar transistor turn-on effect in SOI CMOS ULSI. For a quarter-micron n-channel SOI MOSFET, results suggest a maximum power supply of 1.8 V. In the deep submicron regime, SOI devices exhibited a negative differential resistance due to increased self-heating with drain bias voltage. Detailed comparison with bulk devices suggested significant reduction in the drain-source avalanche breakdown voltage due to increased carrier injection at the source-body junction.< >
ISSN:0018-9383
1557-9646
DOI:10.1109/16.368045