Hippocampal and peripheral blood DNA methylation signatures correlate at the gene and pathway level in a mouse model of autism

Abstract Autism spectrum disorders (ASD) are polygenic multifactorial disorders influenced by environmental factors. ASD-related differential DNA methylation has been found in human peripheral tissues, such as placenta, paternal sperm, buccal epithelium, and blood. However, these data lack direct co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human molecular genetics 2023-12, Vol.32 (24), p.3312-3322
Hauptverfasser: Alberca, Carolina D, Papale, Ligia A, Madrid, Andy, Alisch, Reid S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Autism spectrum disorders (ASD) are polygenic multifactorial disorders influenced by environmental factors. ASD-related differential DNA methylation has been found in human peripheral tissues, such as placenta, paternal sperm, buccal epithelium, and blood. However, these data lack direct comparison of DNA methylation levels with brain tissue from the same individual to determine the extent that peripheral tissues are surrogates for behavior-related disorders. Here, whole genome methylation profiling at all the possible sites throughout the mouse genome (>25 million) from both brain and blood tissues revealed novel insights into the systemic contributions of DNA methylation to ASD. Sixty-six differentially methylated regions (DMRs) share the same genomic coordinates in these two tissues, many of which are linked to risk genes for neurodevelopmental disorders and intellectual disabilities (e.g. Prkch, Ptn, Hcfc1, Mid1, and Nfia). Gene ontological pathways revealed a significant number of common terms between brain and blood (N = 65 terms), and nearly half (30/65) were associated with brain/neuronal development. Furthermore, seven DMR-associated genes among these terms contain methyl-sensitive transcription factor sequence motifs within the DMRs of both tissues; four of them (Cux2, Kcnip2, Fgf13, and Mrtfa) contain the same methyl-sensitive transcription factor binding sequence motifs (HES1/2/5, TBX2 and TFAP2C), suggesting DNA methylation influences the binding of common transcription factors required for gene expression. Together, these findings suggest that peripheral blood is a good surrogate tissue for brain and support that DNA methylation contributes to altered gene regulation in the pathogenesis of ASD.
ISSN:0964-6906
1460-2083
1460-2083
DOI:10.1093/hmg/ddad137