Nonadditivities of the Particle Sizes Hidden in Model Pair Potentials and Their Effects on Physical Adsorptions

It is important to understand the mechanism of colloidal particle assembly near a substrate for development of drug delivery systems, micro-/nanorobots, batteries, heterogeneous catalysts, paints, and cosmetics. Understanding the mechanism is also important for crystallization of the colloidal parti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2023-09, Vol.39 (37), p.12999-13007
Hauptverfasser: Amano, Ken-ichi, Furukawa, Satoshi, Kubo, Yuto, Nakamura, Yuka, Ishii, Rina, Tanase, Ayane, Maebayashi, Masahiro, Hayashi, Tomohiko, Nishi, Naoya, Sakka, Tetsuo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is important to understand the mechanism of colloidal particle assembly near a substrate for development of drug delivery systems, micro-/nanorobots, batteries, heterogeneous catalysts, paints, and cosmetics. Understanding the mechanism is also important for crystallization of the colloidal particles and proteins. In this study, we calculated the physical adsorption of colloidal particles on a flat wall mainly using the integral equation theory, wherein small and large colloidal particles were employed. In the calculation system, like-charged electric double-layer potentials were used as pair potentials. In some cases, it was found that the small particles are more easily adsorbed. This result is unusual from the viewpoint of the Asakura–Oosawa theory, and we call it a “reversal phenomenon”. Theoretical analysis revealed that the reversal phenomenon originates from the nonadditivities of the particle sizes. Using the knowledge obtained from this study, we invented a method to analyze the size nonadditivity hidden in model pair potentials. The method will be useful for confirmation of various simulation results regarding the adsorption and development of force fields for colloidal particles, proteins, and solutes.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.3c00968