Regulating Oxygen Vacancies and Fermi Level of Mesoporous CeO2-x for Intensified Built-In Electric Field and Boosted Charge Separation of Cs3 Bi2 Br9 /CeO2-x S-Scheme Heterojunction

Regulating the built-in electric field (BEF) in the heterojunction is is a great challenge in developing high-efficiency photocatalysts. Herein, by tailoring the content of oxygen vacancies in the constituent reduction semiconductor (mesoporous CeO2-x ), a precise Fermi level (EF ) regulation of CeO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-01, Vol.20 (2), p.e2305566-e2305566
Hauptverfasser: Zhang, Zhijie, Wang, Xuesheng, Li, Deben, Chu, Yaoqing, Xu, Jiayue
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Regulating the built-in electric field (BEF) in the heterojunction is is a great challenge in developing high-efficiency photocatalysts. Herein, by tailoring the content of oxygen vacancies in the constituent reduction semiconductor (mesoporous CeO2-x ), a precise Fermi level (EF ) regulation of CeO2-x is realized, yielding an amplified EF gap and intensified BEF in the Cs3 Bi2 Br9 perovskite quantum dots/CeO2-x S-scheme heterojunction. Such an enhanced BEF offers a strong driving force for directional electron transfer, boosting charge separation in the S-scheme heterojunction. As a result, the optimized Cs3 Bi2 Br9 /CeO2-x heterojunction delivers a remarkable CO2 conversion efficiency, with an impressive CO production rate of 80.26 µmol g-1 h-1 and a high selectivity of 97.6%. The S-scheme charge transfer mode is corroborated comprehensively by density functional theory (DFT) calculations, in situ X-ray photoelectron spectroscopy (XPS), and photo-irradiated Kelvin probe force microscopy (KPFM). Moreover, diffuse reflectance infrared Fourier transform spectra (DRIFTS) and theoretical calculations are conducted cooperatively to reveal the CO2 photoreduction pathway.
ISSN:1613-6829
DOI:10.1002/smll.202305566