Cyanobacterial degradation of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D): Its response to the oxidative stress induced by the primary degradation product 2,4-dichlorophenol (2,4-DCP)

Excessive use of herbicides in agricultural fields has become a major environmental concern due to the negative effects on the ecosystem. Microbial degradation has been well-known as an effective approach for combating such non-natural substances in soil. In the present study, the degradation of 2,4...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comparative biochemistry and physiology. Toxicology & pharmacology 2023-11, Vol.273, p.109739-109739, Article 109739
Hauptverfasser: Sachu, Meguovilie, Kynshi, Balakyntiewshisha Lyngdoh, Syiem, Mayashree B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Excessive use of herbicides in agricultural fields has become a major environmental concern due to the negative effects on the ecosystem. Microbial degradation has been well-known as an effective approach for combating such non-natural substances in soil. In the present study, the degradation of 2,4-Dichlorophenoxyacetic acid (2,4-D) as a result of metabolic activities of a cyanobacterium Nostoc muscorum Meg 1 was investigated using GC–MS analysis. After seven days of 2,4-D exposure, the main residue obtained was 2,4-dichlorophenol (2,4-DCP) at RT: 8.334 (confirmed using NIST library). The effects of 2,4-DCP were studied in a cyanobacterium Nostoc muscorum Meg 1 isolated from a rice field where 2,4-D is commonly used. Exposure to 2,4-DCP at 20, 40, and 80 ppm significantly increased ROS production in the cyanobacterium by 74, 107, and 211 % (p 
ISSN:1532-0456
1878-1659
DOI:10.1016/j.cbpc.2023.109739