Significantly Enhancing Mechanical and Thermal Properties of Cellulose-Based Composites by Adding Small Amounts of Lysozyme-Modified Graphene Nanoplatelets via Forming Strong Double-Cross-Linked Interface Interactions

Thermally conductive cellulose-based composites have great application potential in the thermal management of portable and wearable electronic devices. In this work, cellulose-based composites with excellent mechanical and thermal properties were developed by using lysozyme-modified graphene nanopla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-09, Vol.15 (36), p.43159-43168
Hauptverfasser: Shen, Yufeng, Zhang, Xinru, Su, Jiangpeng, Lin, Lin, Jiang, Zeyi, Qiu, Lin, Wang, Sida, Wu, BingJi, Pu, Changyu, Cai, Xinzhi, Liu, Yuqiao, Zhang, Xinxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thermally conductive cellulose-based composites have great application potential in the thermal management of portable and wearable electronic devices. In this work, cellulose-based composites with excellent mechanical and thermal properties were developed by using lysozyme-modified graphene nanoplatelets (LmGNP), epichlorohydrin (ECH), and hydrolyzed cellulose via forming strong double-cross-linked interface interactions, including the hydrogen bond network generated between LmGNP and cellulose and the chemical cross-link of ECH. As for the composites containing 8 wt % LmGNP, the in-plane thermal conductivity was 3.341 W·m–1K–1, while the tensile stress was 114.60 MPa, which increased by 297.3 and 146.2%, respectively, compared to pure cellulose. Along with the good stability, insulation, and lightweight properties, the fabricated composites have the potential to become a promising heat dissipation material for wearable electronic devices.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.3c08195