Hilbert Space in Isotopologue Dy(III) SMM Dimers: Dipole Interaction Limit in [163/164Dy2(tmhd)6(tape)]0 Complexes
Single-molecule magnets are molecular complexes proposed to be useful for information storage and quantum information processing applications. In the quest for multilevel systems that can act as Qudits, two dysprosium-based isotopologues were synthesized and characterized. The isotopologues are [164...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2023-09, Vol.62 (37), p.15148-15156 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Single-molecule magnets are molecular complexes proposed to be useful for information storage and quantum information processing applications. In the quest for multilevel systems that can act as Qudits, two dysprosium-based isotopologues were synthesized and characterized. The isotopologues are [164Dy2(tmhd)6(tape)] (1 (I=0)) and [163Dy2(tmhd)6(tape)] (2 (I =5/2)), where tmhd = 2,2,6,6-tetramethylheptandionate and tape = 1,6,7,12-tetraazaperylene. Both complexes showed slow relaxation at a zero applied magnetic field with dominant Orbach and Raman relaxation mechanisms. μSQUID studies at milli-Kelvin temperatures reveal quasi-single ion loops, in contrast with the expected S-shape (near zero field) butterfly loops, characteristic of antiferromagnetically coupled dimeric complexes. Through analysis of the low-temperature data, we find that the interaction operating between Dy(III) is small, leading to a small exchange biasing from the zero-field transition. The resulting indirectly coupled nuclear states are degenerate or possess a small energy difference between them. We, therefore, conclude that for the creation of Qudits with enlarged Hilbert spaces, shorter Dy(III)···Dy(III) distances are deemed essential. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.3c02246 |