Liquid-crystal-based fiber laser sensor for non-invasive gas detection

This Letter reports a new optical fiber gas sensor for measuring breath acetone. The sensor is based on photonic bandgap (PBG) mode laser emission sensing technology using liquid crystal (LC), which is combined with silica fiber and chiral nematic liquid crystal (CNLC), thus providing an ultra-compa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2023-09, Vol.48 (17), p.4508-4511
Hauptverfasser: Zhou, Dong, Wang, Qingxiu, Lan, Zeqing, Chen, Yuzhou, Peng, Zenghui, Zhang, Lingli, Liu, Yongjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This Letter reports a new optical fiber gas sensor for measuring breath acetone. The sensor is based on photonic bandgap (PBG) mode laser emission sensing technology using liquid crystal (LC), which is combined with silica fiber and chiral nematic liquid crystal (CNLC), thus providing an ultra-compact, fast-response and simple-to-produce sensing system with a fast response that can accurately and quantitatively determine the concentration of respiratory acetone within the normal oral temperature range (35–38°C). Since LCs are affected by temperature, we propose a method that eliminates the influence of the temperature to solve the problem of the temperature influence when measuring gas. The detection of acetone leads to splitting of the dual laser peaks, with a linear correlation of 0.99. The sensor has a limit of detection of 65 ppm for acetone vapor and thus is suitable for breath acetone detection in diabetic patients.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.489552