Statistical Challenges When Analyzing SARS-CoV-2 RNA Measurements Below the Assay Limit of Quantification in COVID-19 Clinical Trials

Abstract Most clinical trials evaluating coronavirus disease 2019 (COVID-19) therapeutics include assessments of antiviral activity. In recently completed outpatient trials, changes in nasal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA levels from baseline were commonly assessed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of infectious diseases 2023-08, Vol.228 (Supplement_2), p.S101-S110
Hauptverfasser: Moser, Carlee B, Chew, Kara W, Giganti, Mark J, Li, Jonathan Z, Aga, Evgenia, Ritz, Justin, Greninger, Alexander L, Javan, Arzhang Cyrus, Bender Ignacio, Rachel, Daar, Eric S, Wohl, David A, Currier, Judith S, Eron, Joseph J, Smith, Davey M, Hughes, Michael D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Most clinical trials evaluating coronavirus disease 2019 (COVID-19) therapeutics include assessments of antiviral activity. In recently completed outpatient trials, changes in nasal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA levels from baseline were commonly assessed using analysis of covariance (ANCOVA) or mixed models for repeated measures (MMRM) with single imputation for results below assay lower limits of quantification (LLoQ). Analyzing changes in viral RNA levels with singly imputed values can lead to biased estimates of treatment effects. In this article, using an illustrative example from the ACTIV-2 trial, we highlight potential pitfalls of imputation when using ANCOVA or MMRM methods, and illustrate how these methods can be used when considering values
ISSN:0022-1899
1537-6613
1537-6613
DOI:10.1093/infdis/jiad285