Pointwise convergence of derivatives of Lagrange interpolation polynomials for exponential weights

For a general class of exponential weights on the line and on (−1,1), we study pointwise convergence of the derivatives of Lagrange interpolation. Our weights include even weights of smooth polynomial decay near ±∞ (Freud weights), even weights of faster than smooth polynomial decay near ±∞ (Erdös w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2005-01, Vol.173 (2), p.303-319
Hauptverfasser: Damelin, S.B., Jung, H.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a general class of exponential weights on the line and on (−1,1), we study pointwise convergence of the derivatives of Lagrange interpolation. Our weights include even weights of smooth polynomial decay near ±∞ (Freud weights), even weights of faster than smooth polynomial decay near ±∞ (Erdös weights) and even weights which vanish strongly near ±1, for example Pollaczek type weights.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2004.03.013