Influence of the Magnetic Tip on Heterodimers in Electron Spin Resonance Combined with Scanning Tunneling Microscopy
Investigating the quantum properties of individual spins adsorbed on surfaces by electron spin resonance combined with scanning tunneling microscopy (ESR-STM) has shown great potential for the development of quantum information technology on the atomic scale. A magnetic tip exhibiting high spin pola...
Gespeichert in:
Veröffentlicht in: | ACS nano 2023-09, Vol.17 (17), p.16935-16942 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Investigating the quantum properties of individual spins adsorbed on surfaces by electron spin resonance combined with scanning tunneling microscopy (ESR-STM) has shown great potential for the development of quantum information technology on the atomic scale. A magnetic tip exhibiting high spin polarization is critical for performing an ESR-STM experiment. While the tip has been conventionally treated as providing a static magnetic field in ESR-STM, it was found that the tip can exhibit bistability, influencing ESR spectra. Ideally, the ESR splitting caused by the magnetic interaction between two spins on a surface should be independent of the tip. However, we found that the measured ESR splitting of a metal atom–molecule heterodimer can be tip-dependent. Detailed theoretical analysis reveals that this tip-dependent ESR splitting is caused by a different interaction energy between the tip and each spin of the heterodimer. Our work provides a comprehensive reference for characterizing tip features in ESR-STM experiments and highlights the importance of employing a proper physical model when describing the ESR tip, in particular, for heterospin systems. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.3c04024 |