Ultrafast Hole Transfer in Graphitic Carbon Nitride Imide Enabling Efficient H2O2 Photoproduction

Solar-driven photocatalysis is a promising approach for renewable energy application. H2O2 photocatalysis by metal-free graphitic carbon nitride has been gaining attention. Compared with traditional thermal catalysis, metal-free graphitic carbon nitride photocatalysis could lower material cost and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-09, Vol.15 (36), p.42611-42621
Hauptverfasser: Hu, Qiushi, Huang, Yuling, Yu, Xuemeng, Gong, Shaokuan, Wen, Yifan, Liu, Yong, Li, Geng, Zhang, Qiang, Ye, Ruquan, Chen, Xihan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solar-driven photocatalysis is a promising approach for renewable energy application. H2O2 photocatalysis by metal-free graphitic carbon nitride has been gaining attention. Compared with traditional thermal catalysis, metal-free graphitic carbon nitride photocatalysis could lower material cost and achieve greener production of H2O2. Also, to better guide photocatalyst design, a fundamental understanding of the reaction mechanism is needed. Here, we develop a series of model cost-effective metal-free H2O2 photocatalysts made from graphitic carbon nitride (melem) and common imide groups. With 4,4′-oxydiphthalic anhydride (ODPA)-modified g-C3N4, a H2O2 yield rate of 10781 μmol/h·g·L could be achieved. Transient absorption and ex situ Fourier transform infrared (FTIR) measurements revealed an ultrafast charge transfer from the melem core to water with ∼3 ps to form unique N–OH intermediates. The electron withdrawing ability of the anhydride group plays a role in governing the rate of electron transfer, ensuring efficient charge separation. Our strategy represents a new way to achieve a low material cost, simple synthesizing strategy, good environment impact, and high H2O2 production for renewable energy application.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.3c08466