Pharmacokinetics and Absorption, Distribution, Metabolism and Excretion of RGLS4326 in Mouse and Monkey, an Anti–miR-17 Oligonucleotide for the Treatment of Polycystic Kidney Disease

RGLS4326 is a short oligonucleotide inhibitor of microRNA-17 (miR-17) that preferentially distributes to the kidney and displaces miR-17 from translationally active polysomes. Here, we present pharmacokinetics and absorption, distribution, metabolism, and excretion properties of RGLS4326 from mice a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drug metabolism and disposition 2023-11, Vol.51 (11), p.1536-1546
Hauptverfasser: Kamel, Amin, Owen, Tate, Cole, Izaiah, Valencia, Tania, Lee, Edmund C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:RGLS4326 is a short oligonucleotide inhibitor of microRNA-17 (miR-17) that preferentially distributes to the kidney and displaces miR-17 from translationally active polysomes. Here, we present pharmacokinetics and absorption, distribution, metabolism, and excretion properties of RGLS4326 from mice and monkeys. RGLS4326 was absorbed rapidly after subcutaneous administration, distributed extensively to the kidney and liver, with preferential distribution to the kidney, and cleared rapidly from plasma by tissue uptake and renal excretion. Plasma exposure increased in a dose-proportional manner with no notable accumulation after repeat doses. Plasma protein binding of RGLS4326 across all species tested was between 79% and 96%. RGLS4326 predominantly distributed to the kidney with a long half-life (t1/2; t1/2 ranged from 8–11 days) and no marked (≤twofold) accumulation in kidney and liver after repeat doses. RGLS4326 was minimally metabolized by nucleases, not cytochrome P450 (P450) isozymes, across species and underwent sequential hydrolysis from both 3′ and 5′ ends to produce chain-shortened metabolites. There were no human unique metabolites observed. Renal excretion was the major route of elimination of RGLS4326, and a significant fraction (50%–79%) of the dose was recovered intact in the urine of mice and monkeys across all dose levels. RGLS4326 is not a substrate, inhibitor, or inducer of P450 isozymes, and it is not a substrate or inhibitor of uptake and most efflux transporters. Thus, RGLS4326 exhibits low potential of mediating drug-drug interactions involving P450 isozymes and drug transporters. Pharmacokinetics (PK) and absorption, distribution, metabolism, and excretion (ADME) properties of RGLS4326 were characterized in vivo and in vitro. RGLS4326 shows similar PK and ADME properties across mice and monkeys in vivo and across human and animal matrices in vitro. Subcutaneous administration results in preferential exposure of RGLS4326 to the intended target organ (kidney) to drive maximum target engagement. These studies support the interpretation of toxicology and efficacy studies and help characterize the disposition of RGLS4326 in humans. ▪
ISSN:0090-9556
1521-009X
DOI:10.1124/dmd.123.001446