Optimal compatibility proportional screening of Trichosanthis Pericarpium - Trichosanthis Radix and its anti - Inflammatory components effect on experimental zebrafish and coughing mice
The herbal pair of Trichosanthis Pericarpium (TP) - Trichosanthis Radix (TR) can be seen in the famous formula “Beimu Gualou San”. It is a commonly selected combination of medicinal herbs for the treatment of cough with lung heat. Both drugs are derived from Trichosanthes kirilowii Maxim, a medicina...
Gespeichert in:
Veröffentlicht in: | Journal of ethnopharmacology 2024-01, Vol.319, p.117096-117096, Article 117096 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The herbal pair of Trichosanthis Pericarpium (TP) - Trichosanthis Radix (TR) can be seen in the famous formula “Beimu Gualou San”. It is a commonly selected combination of medicinal herbs for the treatment of cough with lung heat. Both drugs are derived from Trichosanthes kirilowii Maxim, a medicinal plant known for its ability to clear heat, resolve phlegm, produce saliva, and alleviate dryness. However, the optimal combination ratio and active ingredients of TP-TR have yet to be determined.
This study aims to investigate the optimal combination ratio of TP-TR and its anti-inflammatory active ingredients in cough treatment.
A zebrafish (Danio rerio) inflammatory injury model and response surface method were applied in the present study to determine the appropriate proportion of TP-TR. Chemical constituents in TP-TR were identified using HPLC-ELSD and UPLC-MS/MS methods. Subsequently, a cough mouse model was created using an ammonia solution to evaluate the effectiveness of the optimal TP-TR ratio. Network pharmacology and intestinal flora sequencing were used to validate the anti-inflammatory components of TP-TR.
The herbal pair of TP - TR at the ratio of 1:2 showed an optimal anti-inflammatory effect, with a composite inflammatory factor score of 119.645 in the zebrafish experiment. TP-TR combination facilitated the dissolution of glutamine, inosine, cytosine, isoquercetin, and other substances. In the animal model, the TP-TR (1:2) treatment significantly reduced the frequency of coughs and prolonged cough latency compared to the model group. Results of the network pharmacology indicated that inflammatory-related factors such as TLR4, STAT3, EGFR, and AKT1 played crucial roles in cough treatment with TP-TR, consistent with the validation experiment. The 16s rDNA sequencing results revealed a significant increase in the abundance of Clostridia_UCG-014, Lachnospiraceae, Christenella, Ruminococcus, and other species in the intestinal tract of mice after modelling. TP-TR (1:2) reduced the abundance of pro-inflammatory flora such as Clostridium_UCG-014 and Lachnospira, which were closely associated with L-lysine and trans-4-hydroxy-L-proline present in TP-TR according to correlation analysis.
TP-TR may promote the dissolution of glutamine, thymidine, inosine, cytosine, isoquercetin, and other components through their combination, thereby regulating the abundance of Clostridium_UCG-014 and Lachnospira and exerting an antitussive effect. This study, for the fir |
---|---|
ISSN: | 0378-8741 1872-7573 |
DOI: | 10.1016/j.jep.2023.117096 |