Regulation of Bombyx mori ferritin heavy-chain homolog on ROS induces multiple effects on BmNPV replication
Ferritin is an iron-binding protein composed of light-chain and heavy-chain homologs with a molecular weight of about 500 kDa. Free iron ions significantly affect reactive oxygen species (ROS) accumulation. Previous research has shown that Bombyx mori nucleopolyhedrosis virus (BmNPV) can increase RO...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2023-12, Vol.253, p.126414-126414, Article 126414 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ferritin is an iron-binding protein composed of light-chain and heavy-chain homologs with a molecular weight of about 500 kDa. Free iron ions significantly affect reactive oxygen species (ROS) accumulation. Previous research has shown that Bombyx mori nucleopolyhedrosis virus (BmNPV) can increase ROS accumulation, activate autophagy, induce apoptosis, and upregulate the expression of B. mori ferritin heavy-chain homolog (BmFerHCH). However, the mechanism of mutual regulation between BmFerHCH and ROS-mediated autophagy and apoptosis induced by BmNPV remains unclear. In this study, we found that BmNPV induced the time-dependent accumulation of ROS in BmN cells, thereby promoting BmFerHCH expression. Interestingly, in BmFerHCH-overexpressed cells, BmNPV replication was inhibited in the first 18 h after infection but stimulated after 24 h. Further research on H2O2 or antioxidant-treated cells indicated that ROS-induced autophagy slightly increased in the early infection stage and increased BmNPV replication, while in the late stage, a large accumulation of ROS induced apoptosis and inhibited BmNPV replication. In this process, BmFerHCH inhibits BmNPV-induced ROS accumulation by chelating Fe2+. Taken together, BmFerHCH regulates ROS-mediated autophagy and apoptosis to achieve its various effects on BmNPV replication. These findings will help elucidate BmNPV-induced autophagy and apoptosis mediated by ROS and BmFerHCH, as well as the mutually fighting relationship between viruses and hosts. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2023.126414 |