Novel Capturer-Catalyst Microreactor System with a Polypyrrole/Metal Nanoparticle Composite Incorporated in the Porous Honeycomb-Patterned Film
A composite of polypyrrole/metal nanoparticles (PPy/MNPs) was selectively incorporated into the pores of a honeycomb-patterned porous polycaprolactone polymer film to fabricate a novel capturer–catalyst microreactor system. This fabrication involved a modified breath figure method, where the polymer...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2023-09, Vol.15 (37), p.44456-44468 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A composite of polypyrrole/metal nanoparticles (PPy/MNPs) was selectively incorporated into the pores of a honeycomb-patterned porous polycaprolactone polymer film to fabricate a novel capturer–catalyst microreactor system. This fabrication involved a modified breath figure method, where the polymer solution containing metal ions as an oxidizing agent was cast under humid conditions along with the pyrrole monomer through an interfacial reaction in a one-step in situ process. The higher hydrophilicity of the metal ions compared to the polymer solution led to their self-assembly around the pore surface, resulting in the selective incorporation of the PPy/MNP composite into the porous film. Copper (Cu), silver (Ag), and gold (Au) were used for the PPy/MNP fabrication. Various methods characterized the fabricated film. Strong catalytic degradations of methylene blue and methyl orange were obtained with PCL-PPy/MNPs. Recycling experiments showed no loss of activity even after five cycles of recycling. Comparative analysis of PCL-PPy, PCL-MNP, and PCL-PPy/MNP results indicated the synergistic action of PPy and MNPs in dye degradation. High-performance liquid chromatography and mass spectroscopy analyses confirmed dye degradation after treatment with a fabricated microreactor. PPy might have acted as a capturer of the dye molecule and MNPs as a catalyst, thereby enhancing the efficiency of dye degradation. Additionally, the PCL-PPy/Cu composite exhibited strong antimicrobial properties against Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli) with no cytotoxicity as measured by the MTT assay. Therefore, the fabricated microreactor film has promising applications in various fields. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.3c07667 |