Linking surface tension to water polarization with a new hypothesis: The Ling-Damodaran Isotherm
Studying aqueous solutions of complex (bio)polymers is essential from both theoretical and practical perspectives. To understand the principles that govern the properties of these solutions is pivotal for the study of biological processes, considering that the most distinguished components of the ce...
Gespeichert in:
Veröffentlicht in: | Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2023-10, Vol.230, p.113515-113515, Article 113515 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Studying aqueous solutions of complex (bio)polymers is essential from both theoretical and practical perspectives. To understand the principles that govern the properties of these solutions is pivotal for the study of biological processes, considering that the most distinguished components of the cells are polymers (proteins, nucleic acids). These macromolecular aqueous systems, known as colloids, has raise the interest of scientists in recent years. It is known that several physicochemical properties deviate from ideal behaviour in this kind of solutions and that the physical state of water is different compared to its pure state. Particularly, the surface tension of such mixtures often shows a peculiar profile at semi-dilute and concentrated conditions. Here, we joined the colloidal concept of water polarization (proposed in the Association-Induction Hypothesis) with Damodaran’s formalism for surface tension to theoretically derive a compelling mathematical model that explains the behaviour of polymer solutions. We measured the surface tension and osmolarity of different polyethylene oxide solutions and we used the ACDAN fluorescence probe to assess the water dipolar relaxation (polarization) in these mixtures. As a proof of concept, we also studied the influence of these polymer solutions on lipid interfaces. Our isotherm model explains the experimental observations with a unifying view that correlates with other measured properties, such as osmolarity and water dipolar relaxation. This provides a link between interfacial and bulk physicochemical properties of polymer solutions, also giving a new framework for studying the interaction of colloidal systems with lipid membranes interfaces.
[Display omitted]
•A unifying hypothesis is proposed for explaining the surface behaviour of polymers.•The theory compellingly tackles polyethylene oxide peculiar surface behaviour.•Model’s parameters correlate with osmolarity and water dipolar relaxation changes.•Depicts the thermodynamic link between surface and colligative properties.•Provides new insights on how a colloidal system interacts with lipid membranes. |
---|---|
ISSN: | 0927-7765 1873-4367 |
DOI: | 10.1016/j.colsurfb.2023.113515 |