Arbitrary pulse shape synthesis via nonuniform transmission lines
A discrete inverse scattering technique is used to define the impedance profile for a nonuniform transmission line which reflects an arbitrary waveform. Initially charged nonuniform lines, switched out into a general load, can also be synthesized by this method, and are discussed. The direct or laye...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 1990-10, Vol.38 (10), p.1514-1518 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A discrete inverse scattering technique is used to define the impedance profile for a nonuniform transmission line which reflects an arbitrary waveform. Initially charged nonuniform lines, switched out into a general load, can also be synthesized by this method, and are discussed. The direct or layer peeling algorithm is applied to generate profiles which are subsequently analyzed using the one-dimensional finite difference method and fabricated in stripline. Excitation for the nonuniform line is done by using a charged line connected to a photoconductive Si switch triggered by a mode-locked YLF laser. Several lines were fabricated relevant to amplitude modulation of the master oscillator laser pulse for fusion experiments. Using the layer peeling method, a complex high-voltage pulse shape for use in laser fusion experiments is synthesized to an extraordinary degree of precision. It is possible to generate any arbitrary pulse shape by reflecting a step pulse off a synthesized nonuniform transmission line provided the power spectrum of the reflected pulse does not exceed that of the input pulse at any frequency.< > |
---|---|
ISSN: | 0018-9480 1557-9670 |
DOI: | 10.1109/22.58694 |