Robust estimation without positive real condition
The strictly positive real (SPR) condition on the noise model is necessary for a discrete-time linear stochastic control system with unmodeled dynamics, even so for a time-invariant ARMAX system, in the past robust analysis of parameter estimation. However, this condition is hardly satisfied for a h...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 1998-07, Vol.43 (7), p.938-943 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The strictly positive real (SPR) condition on the noise model is necessary for a discrete-time linear stochastic control system with unmodeled dynamics, even so for a time-invariant ARMAX system, in the past robust analysis of parameter estimation. However, this condition is hardly satisfied for a high-order and/or multidimensional system with correlated noise. The main work in this paper is to show that for robust parameter estimation and adaptive tracking, as well as closed-loop system stabilization, the SPR condition is replaced by a stable matrix polynomial. The main method is to design a "two-step" recursive least squares algorithm with or without a weighted factor and with a fixed lag regressive vector and to define an adaptive control with bounded external excitation and with randomly varying truncation. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/9.701092 |