Robust estimation without positive real condition

The strictly positive real (SPR) condition on the noise model is necessary for a discrete-time linear stochastic control system with unmodeled dynamics, even so for a time-invariant ARMAX system, in the past robust analysis of parameter estimation. However, this condition is hardly satisfied for a h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 1998-07, Vol.43 (7), p.938-943
Hauptverfasser: LI, R, HONG, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The strictly positive real (SPR) condition on the noise model is necessary for a discrete-time linear stochastic control system with unmodeled dynamics, even so for a time-invariant ARMAX system, in the past robust analysis of parameter estimation. However, this condition is hardly satisfied for a high-order and/or multidimensional system with correlated noise. The main work in this paper is to show that for robust parameter estimation and adaptive tracking, as well as closed-loop system stabilization, the SPR condition is replaced by a stable matrix polynomial. The main method is to design a "two-step" recursive least squares algorithm with or without a weighted factor and with a fixed lag regressive vector and to define an adaptive control with bounded external excitation and with randomly varying truncation.
ISSN:0018-9286
1558-2523
DOI:10.1109/9.701092