Design and Synthesis of Artificial Nucleobases for Sequence‐Selective DNA Recognition within the Major Groove

We present the design and synthesis of artificial specific nucleobases, each one recognizing a single base pair within the major groove of duplex DNA. Computational calculations indicate that PNAs modified with these nucleobases enable the formation of highly stable triple helices with no sequence r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry, an Asian journal an Asian journal, 2023-10, Vol.18 (19), p.e202300637-e202300637
Hauptverfasser: Alavijeh, Nahid S., Serrano, Alvaro, Peters, Max S., Wölper, Christoph, Schrader, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present the design and synthesis of artificial specific nucleobases, each one recognizing a single base pair within the major groove of duplex DNA. Computational calculations indicate that PNAs modified with these nucleobases enable the formation of highly stable triple helices with no sequence restrictions through multiple hydrogen bonding and π⋅⋅⋅π stacking interactions, without significantly widening the DNA double helix. New synthetic routes were developed to the structures of these fused heterocycles which have rarely been described in the literature. NMR titration experiments indicate specific hydrogen bonding at the Hoogsteen sites. The new building blocks allow the construction of four PNA monomers for each canonic base pair and their covalent connection to PNA oligomers. These can be designed complementary to any given DNA sequence. With high efficiency and relative simplicity of operation, the described methodologies and strategies hence form the basis for a new supramolecular ligand system targeting double‐stranded DNA without strand invasion.
ISSN:1861-4728
1861-471X
DOI:10.1002/asia.202300637