Digital-scRRBS: A Cost-Effective, Highly Sensitive, and Automated Single-Cell Methylome Analysis Platform via Digital Microfluidics

Single-cell DNA methylation sequencing is highly effective for identifying cell subpopulations and constructing epigenetic regulatory networks. Existing methylome analyses require extensive starting materials and are costly, complex, and susceptible to contamination, thereby impeding the development...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2023-09, Vol.95 (35), p.13313-13321
Hauptverfasser: Zeng, Xi, Guo, Xiaoxu, Jiang, Shaowei, Yang, Xiaoping, Zhong, Zhixing, Liu, Siyu, Zhu, Zhi, Song, Jia, Yang, Chaoyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Single-cell DNA methylation sequencing is highly effective for identifying cell subpopulations and constructing epigenetic regulatory networks. Existing methylome analyses require extensive starting materials and are costly, complex, and susceptible to contamination, thereby impeding the development of single-cell methylome technology. In this work, we report digital microfluidics-based single-cell reduced representation bisulfite sequencing (digital-scRRBS), the first microfluidics-based single-cell methylome library construction platform, which is an automatic, effective, reproducible, and reagent-efficient technique to dissect the single-cell methylome. Using our digital microfluidic chip, we isolated single cells in 15 s and successfully constructed single-cell methylation sequencing libraries with a unique genome mapping rate of up to 53.6%, covering up to 2.26 million CpG sites. Digital-scRRBS demonstrates a high capacity for distinguishing cell identity and tracking DNA methylation during drug administration. Digital-scRRBS expands the applicability of single-cell methylation methods as a versatile tool for epigenetic analysis of rare cells and populations with high levels of heterogeneity.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.3c02484