Reinforcement learning for high-level fuzzy Petri nets

The author has developed a reinforcement learning algorithm for the high-level fuzzy Petri net (HLFPN) models in order to perform structure and parameter learning simultaneously. In addition to the HLFPN itself, the difference and similarity among a variety of subclasses concerning Petri nets are al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2003-04, Vol.33 (2), p.351-362
1. Verfasser: Shen, V.R.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The author has developed a reinforcement learning algorithm for the high-level fuzzy Petri net (HLFPN) models in order to perform structure and parameter learning simultaneously. In addition to the HLFPN itself, the difference and similarity among a variety of subclasses concerning Petri nets are also discussed. As compared with the fuzzy adaptive learning control network (FALCON), the HLFPN model preserves the advantages that: 1) it offers more flexible learning capability because it is able to model both IF-THEN and IF-THEN-ELSE rules; 2) it allows multiple heterogeneous outputs to be drawn if they exist; 3) it offers a more compact data structure for fuzzy production rules so as to save information storage; and 4) it is able to learn faster due to its structural reduction. Finally, main results are presented in the form of seven propositions and supported by some experiments.
ISSN:1083-4419
2168-2267
1941-0492
2168-2275
DOI:10.1109/TSMCB.2003.810448