Real-time frequency and harmonic evaluation using artificial neural networks

With increasing harmonic pollution in the power system, real-time monitoring and analysis of harmonic variations have become important. Because of limitations associated with conventional algorithms, particularly under supply-frequency drift and transient situations, a new approach based on nonlinea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power delivery 1999-01, Vol.14 (1), p.52-59
Hauptverfasser: Lai, L.L., Chan, W.L., Tse, C.T., So, A.T.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue 1
container_start_page 52
container_title IEEE transactions on power delivery
container_volume 14
creator Lai, L.L.
Chan, W.L.
Tse, C.T.
So, A.T.P.
description With increasing harmonic pollution in the power system, real-time monitoring and analysis of harmonic variations have become important. Because of limitations associated with conventional algorithms, particularly under supply-frequency drift and transient situations, a new approach based on nonlinear least-squares parameter estimation has been proposed as an alternative solution for high-accuracy evaluation. However, the computational demand of the algorithm is very high and it is more appropriate to use Hopfield type feedback neural networks for real-time harmonic evaluation. The proposed neural network implementation determines simultaneously the supply-frequency variation, the fundamental-amplitude/phase variation as well as the harmonics-amplitude/phase variation. The distinctive feature is that the supply-frequency variation is handled separately from the amplitude/phase variations, thus ensuring high computational speed and high convergence rate. Examples by computer simulation are used to demonstrate the effectiveness of the implementation. A set of data taken on site was used as a real application of the system.
doi_str_mv 10.1109/61.736681
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28570567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>736681</ieee_id><sourcerecordid>27115608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-2e1a8e94fb07befe22eaf3bc27a3f5b381b2b8ae8a49895e873876717e2edff53</originalsourceid><addsrcrecordid>eNqF0ctLw0AQBvBFFKzVg1dPe1I8pO4j2cdRSn1AQRA9h0k6q6t51N1E6X9vaopHPX2H-THM8BFyytmMc2avFJ9pqZThe2TCrdRJKpjZJxNmTJYYq_UhOYrxjTGWMssmZPmIUCWdr5G6gB89NuWGQrOirxDqtvElxU-oeuh829A--uaFQui886WHijbYh5_ovtrwHo_JgYMq4skup-T5ZvE0v0uWD7f38-tlUsqUdYlADgZt6gqmC3QoBIKTRSk0SJcV0vBCFAbQQGqNzdBoabTSXKPAlXOZnJKLce86tMPJsctrH0usKmiw7WNuubVyeHgrz_-UwmSaZUr_DzXnmWJmgJcjLEMbY0CXr4OvIWxyzvJtBbni-VjBYM9G6xHx1-2G3xdpgd0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27115608</pqid></control><display><type>article</type><title>Real-time frequency and harmonic evaluation using artificial neural networks</title><source>IEEE Electronic Library (IEL)</source><creator>Lai, L.L. ; Chan, W.L. ; Tse, C.T. ; So, A.T.P.</creator><creatorcontrib>Lai, L.L. ; Chan, W.L. ; Tse, C.T. ; So, A.T.P.</creatorcontrib><description>With increasing harmonic pollution in the power system, real-time monitoring and analysis of harmonic variations have become important. Because of limitations associated with conventional algorithms, particularly under supply-frequency drift and transient situations, a new approach based on nonlinear least-squares parameter estimation has been proposed as an alternative solution for high-accuracy evaluation. However, the computational demand of the algorithm is very high and it is more appropriate to use Hopfield type feedback neural networks for real-time harmonic evaluation. The proposed neural network implementation determines simultaneously the supply-frequency variation, the fundamental-amplitude/phase variation as well as the harmonics-amplitude/phase variation. The distinctive feature is that the supply-frequency variation is handled separately from the amplitude/phase variations, thus ensuring high computational speed and high convergence rate. Examples by computer simulation are used to demonstrate the effectiveness of the implementation. A set of data taken on site was used as a real application of the system.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/61.736681</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithms ; Computation ; Computer simulation ; Demand ; Feedback ; Frequency ; Harmonic analysis ; Harmonics ; Monitoring ; Neural networks ; Parameter estimation ; Pollution ; Power system analysis computing ; Power system harmonics ; Power system transients ; Real time ; Real time systems</subject><ispartof>IEEE transactions on power delivery, 1999-01, Vol.14 (1), p.52-59</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-2e1a8e94fb07befe22eaf3bc27a3f5b381b2b8ae8a49895e873876717e2edff53</citedby><cites>FETCH-LOGICAL-c340t-2e1a8e94fb07befe22eaf3bc27a3f5b381b2b8ae8a49895e873876717e2edff53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/736681$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/736681$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lai, L.L.</creatorcontrib><creatorcontrib>Chan, W.L.</creatorcontrib><creatorcontrib>Tse, C.T.</creatorcontrib><creatorcontrib>So, A.T.P.</creatorcontrib><title>Real-time frequency and harmonic evaluation using artificial neural networks</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>With increasing harmonic pollution in the power system, real-time monitoring and analysis of harmonic variations have become important. Because of limitations associated with conventional algorithms, particularly under supply-frequency drift and transient situations, a new approach based on nonlinear least-squares parameter estimation has been proposed as an alternative solution for high-accuracy evaluation. However, the computational demand of the algorithm is very high and it is more appropriate to use Hopfield type feedback neural networks for real-time harmonic evaluation. The proposed neural network implementation determines simultaneously the supply-frequency variation, the fundamental-amplitude/phase variation as well as the harmonics-amplitude/phase variation. The distinctive feature is that the supply-frequency variation is handled separately from the amplitude/phase variations, thus ensuring high computational speed and high convergence rate. Examples by computer simulation are used to demonstrate the effectiveness of the implementation. A set of data taken on site was used as a real application of the system.</description><subject>Algorithms</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Demand</subject><subject>Feedback</subject><subject>Frequency</subject><subject>Harmonic analysis</subject><subject>Harmonics</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>Parameter estimation</subject><subject>Pollution</subject><subject>Power system analysis computing</subject><subject>Power system harmonics</subject><subject>Power system transients</subject><subject>Real time</subject><subject>Real time systems</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0ctLw0AQBvBFFKzVg1dPe1I8pO4j2cdRSn1AQRA9h0k6q6t51N1E6X9vaopHPX2H-THM8BFyytmMc2avFJ9pqZThe2TCrdRJKpjZJxNmTJYYq_UhOYrxjTGWMssmZPmIUCWdr5G6gB89NuWGQrOirxDqtvElxU-oeuh829A--uaFQui886WHijbYh5_ovtrwHo_JgYMq4skup-T5ZvE0v0uWD7f38-tlUsqUdYlADgZt6gqmC3QoBIKTRSk0SJcV0vBCFAbQQGqNzdBoabTSXKPAlXOZnJKLce86tMPJsctrH0usKmiw7WNuubVyeHgrz_-UwmSaZUr_DzXnmWJmgJcjLEMbY0CXr4OvIWxyzvJtBbni-VjBYM9G6xHx1-2G3xdpgd0</recordid><startdate>199901</startdate><enddate>199901</enddate><creator>Lai, L.L.</creator><creator>Chan, W.L.</creator><creator>Tse, C.T.</creator><creator>So, A.T.P.</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7TB</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>199901</creationdate><title>Real-time frequency and harmonic evaluation using artificial neural networks</title><author>Lai, L.L. ; Chan, W.L. ; Tse, C.T. ; So, A.T.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-2e1a8e94fb07befe22eaf3bc27a3f5b381b2b8ae8a49895e873876717e2edff53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithms</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Demand</topic><topic>Feedback</topic><topic>Frequency</topic><topic>Harmonic analysis</topic><topic>Harmonics</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>Parameter estimation</topic><topic>Pollution</topic><topic>Power system analysis computing</topic><topic>Power system harmonics</topic><topic>Power system transients</topic><topic>Real time</topic><topic>Real time systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, L.L.</creatorcontrib><creatorcontrib>Chan, W.L.</creatorcontrib><creatorcontrib>Tse, C.T.</creatorcontrib><creatorcontrib>So, A.T.P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lai, L.L.</au><au>Chan, W.L.</au><au>Tse, C.T.</au><au>So, A.T.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time frequency and harmonic evaluation using artificial neural networks</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>1999-01</date><risdate>1999</risdate><volume>14</volume><issue>1</issue><spage>52</spage><epage>59</epage><pages>52-59</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>With increasing harmonic pollution in the power system, real-time monitoring and analysis of harmonic variations have become important. Because of limitations associated with conventional algorithms, particularly under supply-frequency drift and transient situations, a new approach based on nonlinear least-squares parameter estimation has been proposed as an alternative solution for high-accuracy evaluation. However, the computational demand of the algorithm is very high and it is more appropriate to use Hopfield type feedback neural networks for real-time harmonic evaluation. The proposed neural network implementation determines simultaneously the supply-frequency variation, the fundamental-amplitude/phase variation as well as the harmonics-amplitude/phase variation. The distinctive feature is that the supply-frequency variation is handled separately from the amplitude/phase variations, thus ensuring high computational speed and high convergence rate. Examples by computer simulation are used to demonstrate the effectiveness of the implementation. A set of data taken on site was used as a real application of the system.</abstract><pub>IEEE</pub><doi>10.1109/61.736681</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8977
ispartof IEEE transactions on power delivery, 1999-01, Vol.14 (1), p.52-59
issn 0885-8977
1937-4208
language eng
recordid cdi_proquest_miscellaneous_28570567
source IEEE Electronic Library (IEL)
subjects Algorithms
Computation
Computer simulation
Demand
Feedback
Frequency
Harmonic analysis
Harmonics
Monitoring
Neural networks
Parameter estimation
Pollution
Power system analysis computing
Power system harmonics
Power system transients
Real time
Real time systems
title Real-time frequency and harmonic evaluation using artificial neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A22%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20frequency%20and%20harmonic%20evaluation%20using%20artificial%20neural%20networks&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Lai,%20L.L.&rft.date=1999-01&rft.volume=14&rft.issue=1&rft.spage=52&rft.epage=59&rft.pages=52-59&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/61.736681&rft_dat=%3Cproquest_RIE%3E27115608%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27115608&rft_id=info:pmid/&rft_ieee_id=736681&rfr_iscdi=true