Real-time frequency and harmonic evaluation using artificial neural networks
With increasing harmonic pollution in the power system, real-time monitoring and analysis of harmonic variations have become important. Because of limitations associated with conventional algorithms, particularly under supply-frequency drift and transient situations, a new approach based on nonlinea...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power delivery 1999-01, Vol.14 (1), p.52-59 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 59 |
---|---|
container_issue | 1 |
container_start_page | 52 |
container_title | IEEE transactions on power delivery |
container_volume | 14 |
creator | Lai, L.L. Chan, W.L. Tse, C.T. So, A.T.P. |
description | With increasing harmonic pollution in the power system, real-time monitoring and analysis of harmonic variations have become important. Because of limitations associated with conventional algorithms, particularly under supply-frequency drift and transient situations, a new approach based on nonlinear least-squares parameter estimation has been proposed as an alternative solution for high-accuracy evaluation. However, the computational demand of the algorithm is very high and it is more appropriate to use Hopfield type feedback neural networks for real-time harmonic evaluation. The proposed neural network implementation determines simultaneously the supply-frequency variation, the fundamental-amplitude/phase variation as well as the harmonics-amplitude/phase variation. The distinctive feature is that the supply-frequency variation is handled separately from the amplitude/phase variations, thus ensuring high computational speed and high convergence rate. Examples by computer simulation are used to demonstrate the effectiveness of the implementation. A set of data taken on site was used as a real application of the system. |
doi_str_mv | 10.1109/61.736681 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28570567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>736681</ieee_id><sourcerecordid>27115608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-2e1a8e94fb07befe22eaf3bc27a3f5b381b2b8ae8a49895e873876717e2edff53</originalsourceid><addsrcrecordid>eNqF0ctLw0AQBvBFFKzVg1dPe1I8pO4j2cdRSn1AQRA9h0k6q6t51N1E6X9vaopHPX2H-THM8BFyytmMc2avFJ9pqZThe2TCrdRJKpjZJxNmTJYYq_UhOYrxjTGWMssmZPmIUCWdr5G6gB89NuWGQrOirxDqtvElxU-oeuh829A--uaFQui886WHijbYh5_ovtrwHo_JgYMq4skup-T5ZvE0v0uWD7f38-tlUsqUdYlADgZt6gqmC3QoBIKTRSk0SJcV0vBCFAbQQGqNzdBoabTSXKPAlXOZnJKLce86tMPJsctrH0usKmiw7WNuubVyeHgrz_-UwmSaZUr_DzXnmWJmgJcjLEMbY0CXr4OvIWxyzvJtBbni-VjBYM9G6xHx1-2G3xdpgd0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27115608</pqid></control><display><type>article</type><title>Real-time frequency and harmonic evaluation using artificial neural networks</title><source>IEEE Electronic Library (IEL)</source><creator>Lai, L.L. ; Chan, W.L. ; Tse, C.T. ; So, A.T.P.</creator><creatorcontrib>Lai, L.L. ; Chan, W.L. ; Tse, C.T. ; So, A.T.P.</creatorcontrib><description>With increasing harmonic pollution in the power system, real-time monitoring and analysis of harmonic variations have become important. Because of limitations associated with conventional algorithms, particularly under supply-frequency drift and transient situations, a new approach based on nonlinear least-squares parameter estimation has been proposed as an alternative solution for high-accuracy evaluation. However, the computational demand of the algorithm is very high and it is more appropriate to use Hopfield type feedback neural networks for real-time harmonic evaluation. The proposed neural network implementation determines simultaneously the supply-frequency variation, the fundamental-amplitude/phase variation as well as the harmonics-amplitude/phase variation. The distinctive feature is that the supply-frequency variation is handled separately from the amplitude/phase variations, thus ensuring high computational speed and high convergence rate. Examples by computer simulation are used to demonstrate the effectiveness of the implementation. A set of data taken on site was used as a real application of the system.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/61.736681</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithms ; Computation ; Computer simulation ; Demand ; Feedback ; Frequency ; Harmonic analysis ; Harmonics ; Monitoring ; Neural networks ; Parameter estimation ; Pollution ; Power system analysis computing ; Power system harmonics ; Power system transients ; Real time ; Real time systems</subject><ispartof>IEEE transactions on power delivery, 1999-01, Vol.14 (1), p.52-59</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-2e1a8e94fb07befe22eaf3bc27a3f5b381b2b8ae8a49895e873876717e2edff53</citedby><cites>FETCH-LOGICAL-c340t-2e1a8e94fb07befe22eaf3bc27a3f5b381b2b8ae8a49895e873876717e2edff53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/736681$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/736681$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lai, L.L.</creatorcontrib><creatorcontrib>Chan, W.L.</creatorcontrib><creatorcontrib>Tse, C.T.</creatorcontrib><creatorcontrib>So, A.T.P.</creatorcontrib><title>Real-time frequency and harmonic evaluation using artificial neural networks</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>With increasing harmonic pollution in the power system, real-time monitoring and analysis of harmonic variations have become important. Because of limitations associated with conventional algorithms, particularly under supply-frequency drift and transient situations, a new approach based on nonlinear least-squares parameter estimation has been proposed as an alternative solution for high-accuracy evaluation. However, the computational demand of the algorithm is very high and it is more appropriate to use Hopfield type feedback neural networks for real-time harmonic evaluation. The proposed neural network implementation determines simultaneously the supply-frequency variation, the fundamental-amplitude/phase variation as well as the harmonics-amplitude/phase variation. The distinctive feature is that the supply-frequency variation is handled separately from the amplitude/phase variations, thus ensuring high computational speed and high convergence rate. Examples by computer simulation are used to demonstrate the effectiveness of the implementation. A set of data taken on site was used as a real application of the system.</description><subject>Algorithms</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Demand</subject><subject>Feedback</subject><subject>Frequency</subject><subject>Harmonic analysis</subject><subject>Harmonics</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>Parameter estimation</subject><subject>Pollution</subject><subject>Power system analysis computing</subject><subject>Power system harmonics</subject><subject>Power system transients</subject><subject>Real time</subject><subject>Real time systems</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0ctLw0AQBvBFFKzVg1dPe1I8pO4j2cdRSn1AQRA9h0k6q6t51N1E6X9vaopHPX2H-THM8BFyytmMc2avFJ9pqZThe2TCrdRJKpjZJxNmTJYYq_UhOYrxjTGWMssmZPmIUCWdr5G6gB89NuWGQrOirxDqtvElxU-oeuh829A--uaFQui886WHijbYh5_ovtrwHo_JgYMq4skup-T5ZvE0v0uWD7f38-tlUsqUdYlADgZt6gqmC3QoBIKTRSk0SJcV0vBCFAbQQGqNzdBoabTSXKPAlXOZnJKLce86tMPJsctrH0usKmiw7WNuubVyeHgrz_-UwmSaZUr_DzXnmWJmgJcjLEMbY0CXr4OvIWxyzvJtBbni-VjBYM9G6xHx1-2G3xdpgd0</recordid><startdate>199901</startdate><enddate>199901</enddate><creator>Lai, L.L.</creator><creator>Chan, W.L.</creator><creator>Tse, C.T.</creator><creator>So, A.T.P.</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7TB</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>199901</creationdate><title>Real-time frequency and harmonic evaluation using artificial neural networks</title><author>Lai, L.L. ; Chan, W.L. ; Tse, C.T. ; So, A.T.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-2e1a8e94fb07befe22eaf3bc27a3f5b381b2b8ae8a49895e873876717e2edff53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithms</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Demand</topic><topic>Feedback</topic><topic>Frequency</topic><topic>Harmonic analysis</topic><topic>Harmonics</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>Parameter estimation</topic><topic>Pollution</topic><topic>Power system analysis computing</topic><topic>Power system harmonics</topic><topic>Power system transients</topic><topic>Real time</topic><topic>Real time systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, L.L.</creatorcontrib><creatorcontrib>Chan, W.L.</creatorcontrib><creatorcontrib>Tse, C.T.</creatorcontrib><creatorcontrib>So, A.T.P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lai, L.L.</au><au>Chan, W.L.</au><au>Tse, C.T.</au><au>So, A.T.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time frequency and harmonic evaluation using artificial neural networks</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>1999-01</date><risdate>1999</risdate><volume>14</volume><issue>1</issue><spage>52</spage><epage>59</epage><pages>52-59</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>With increasing harmonic pollution in the power system, real-time monitoring and analysis of harmonic variations have become important. Because of limitations associated with conventional algorithms, particularly under supply-frequency drift and transient situations, a new approach based on nonlinear least-squares parameter estimation has been proposed as an alternative solution for high-accuracy evaluation. However, the computational demand of the algorithm is very high and it is more appropriate to use Hopfield type feedback neural networks for real-time harmonic evaluation. The proposed neural network implementation determines simultaneously the supply-frequency variation, the fundamental-amplitude/phase variation as well as the harmonics-amplitude/phase variation. The distinctive feature is that the supply-frequency variation is handled separately from the amplitude/phase variations, thus ensuring high computational speed and high convergence rate. Examples by computer simulation are used to demonstrate the effectiveness of the implementation. A set of data taken on site was used as a real application of the system.</abstract><pub>IEEE</pub><doi>10.1109/61.736681</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8977 |
ispartof | IEEE transactions on power delivery, 1999-01, Vol.14 (1), p.52-59 |
issn | 0885-8977 1937-4208 |
language | eng |
recordid | cdi_proquest_miscellaneous_28570567 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Computation Computer simulation Demand Feedback Frequency Harmonic analysis Harmonics Monitoring Neural networks Parameter estimation Pollution Power system analysis computing Power system harmonics Power system transients Real time Real time systems |
title | Real-time frequency and harmonic evaluation using artificial neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A22%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20frequency%20and%20harmonic%20evaluation%20using%20artificial%20neural%20networks&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Lai,%20L.L.&rft.date=1999-01&rft.volume=14&rft.issue=1&rft.spage=52&rft.epage=59&rft.pages=52-59&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/61.736681&rft_dat=%3Cproquest_RIE%3E27115608%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27115608&rft_id=info:pmid/&rft_ieee_id=736681&rfr_iscdi=true |