Real-time frequency and harmonic evaluation using artificial neural networks

With increasing harmonic pollution in the power system, real-time monitoring and analysis of harmonic variations have become important. Because of limitations associated with conventional algorithms, particularly under supply-frequency drift and transient situations, a new approach based on nonlinea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power delivery 1999-01, Vol.14 (1), p.52-59
Hauptverfasser: Lai, L.L., Chan, W.L., Tse, C.T., So, A.T.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With increasing harmonic pollution in the power system, real-time monitoring and analysis of harmonic variations have become important. Because of limitations associated with conventional algorithms, particularly under supply-frequency drift and transient situations, a new approach based on nonlinear least-squares parameter estimation has been proposed as an alternative solution for high-accuracy evaluation. However, the computational demand of the algorithm is very high and it is more appropriate to use Hopfield type feedback neural networks for real-time harmonic evaluation. The proposed neural network implementation determines simultaneously the supply-frequency variation, the fundamental-amplitude/phase variation as well as the harmonics-amplitude/phase variation. The distinctive feature is that the supply-frequency variation is handled separately from the amplitude/phase variations, thus ensuring high computational speed and high convergence rate. Examples by computer simulation are used to demonstrate the effectiveness of the implementation. A set of data taken on site was used as a real application of the system.
ISSN:0885-8977
1937-4208
DOI:10.1109/61.736681