Robust backstepping control of nonlinear systems using neural networks

A controller is proposed for the robust backstepping control of a class of general nonlinear systems using neural networks (NNs). A tuning scheme is proposed which can guarantee the boundedness of tracking error and weight updates. Compared with adaptive backstepping control schemes, we do not requi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man and cybernetics. Part A, Systems and humans man and cybernetics. Part A, Systems and humans, 2000-11, Vol.30 (6), p.753-766
Hauptverfasser: Kwan, C., Lewis, F.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 766
container_issue 6
container_start_page 753
container_title IEEE transactions on systems, man and cybernetics. Part A, Systems and humans
container_volume 30
creator Kwan, C.
Lewis, F.L.
description A controller is proposed for the robust backstepping control of a class of general nonlinear systems using neural networks (NNs). A tuning scheme is proposed which can guarantee the boundedness of tracking error and weight updates. Compared with adaptive backstepping control schemes, we do not require the unknown parameters to be linear parametrizable. No regression matrices are needed, so no preliminary dynamical analysis is needed. One salient feature of our NN approach is that there is no need for the off-line learning phase. Three nonlinear systems, including a one-link robot, an induction motor, and a rigid-link flexible-joint robot, were used to demonstrate the effectiveness of the proposed scheme.
doi_str_mv 10.1109/3468.895898
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28565079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>895898</ieee_id><sourcerecordid>27684594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-16f7121f25dbe43a02d59a2675efeb1b88c6d4106d2109bd3d97300c2e8abe503</originalsourceid><addsrcrecordid>eNqF0cFLwzAUBvAgCs7pyZun4kEP0pmkSZocZTgVBoLoOaTtq3Trkpm0yP57Uzo8eHCnF3g_vpB8CF0SPCMEq_uMCTmTikslj9CEcC5Tyqg4jmcss5Qxmp-isxBWGBPGFJugxZsr-tAlhSnXoYPttrGfSels512buDqxzraNBeOTsIv7TUj6MBALvTdtHN238-twjk5q0wa42M8p-lg8vs-f0-Xr08v8YZmWDNMuJaLOCSU15VUBLDOYVlwZKnIONRSkkLIUFSNYVDQ-p6iySuUZxiUFaQrgOJui2zF3691XD6HTmyaU0LbGguuDVoSJjAgqorz5V1KF4x2YHYaSC45zdRjmQjKuhsTrP3Dlem_jv2gpYxRRjEZ0N6LSuxA81Hrrm43xO02wHsrUQ5l6LDPqq1E3APAr98sfO3iY0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885071942</pqid></control><display><type>article</type><title>Robust backstepping control of nonlinear systems using neural networks</title><source>IEEE Xplore</source><creator>Kwan, C. ; Lewis, F.L.</creator><creatorcontrib>Kwan, C. ; Lewis, F.L.</creatorcontrib><description>A controller is proposed for the robust backstepping control of a class of general nonlinear systems using neural networks (NNs). A tuning scheme is proposed which can guarantee the boundedness of tracking error and weight updates. Compared with adaptive backstepping control schemes, we do not require the unknown parameters to be linear parametrizable. No regression matrices are needed, so no preliminary dynamical analysis is needed. One salient feature of our NN approach is that there is no need for the off-line learning phase. Three nonlinear systems, including a one-link robot, an induction motor, and a rigid-link flexible-joint robot, were used to demonstrate the effectiveness of the proposed scheme.</description><identifier>ISSN: 1083-4427</identifier><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 1558-2426</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/3468.895898</identifier><identifier>CODEN: ITSHFX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Adaptive control systems ; Backstepping ; Control systems ; Dynamical systems ; Error correction ; Neural networks ; Nonlinear control systems ; Nonlinear dynamics ; Nonlinear systems ; Programmable control ; Regression ; Robots ; Robust control ; Tuning</subject><ispartof>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans, 2000-11, Vol.30 (6), p.753-766</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-16f7121f25dbe43a02d59a2675efeb1b88c6d4106d2109bd3d97300c2e8abe503</citedby><cites>FETCH-LOGICAL-c402t-16f7121f25dbe43a02d59a2675efeb1b88c6d4106d2109bd3d97300c2e8abe503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/895898$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/895898$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kwan, C.</creatorcontrib><creatorcontrib>Lewis, F.L.</creatorcontrib><title>Robust backstepping control of nonlinear systems using neural networks</title><title>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</title><addtitle>TSMCA</addtitle><description>A controller is proposed for the robust backstepping control of a class of general nonlinear systems using neural networks (NNs). A tuning scheme is proposed which can guarantee the boundedness of tracking error and weight updates. Compared with adaptive backstepping control schemes, we do not require the unknown parameters to be linear parametrizable. No regression matrices are needed, so no preliminary dynamical analysis is needed. One salient feature of our NN approach is that there is no need for the off-line learning phase. Three nonlinear systems, including a one-link robot, an induction motor, and a rigid-link flexible-joint robot, were used to demonstrate the effectiveness of the proposed scheme.</description><subject>Adaptive control</subject><subject>Adaptive control systems</subject><subject>Backstepping</subject><subject>Control systems</subject><subject>Dynamical systems</subject><subject>Error correction</subject><subject>Neural networks</subject><subject>Nonlinear control systems</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Programmable control</subject><subject>Regression</subject><subject>Robots</subject><subject>Robust control</subject><subject>Tuning</subject><issn>1083-4427</issn><issn>2168-2216</issn><issn>1558-2426</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0cFLwzAUBvAgCs7pyZun4kEP0pmkSZocZTgVBoLoOaTtq3Trkpm0yP57Uzo8eHCnF3g_vpB8CF0SPCMEq_uMCTmTikslj9CEcC5Tyqg4jmcss5Qxmp-isxBWGBPGFJugxZsr-tAlhSnXoYPttrGfSels512buDqxzraNBeOTsIv7TUj6MBALvTdtHN238-twjk5q0wa42M8p-lg8vs-f0-Xr08v8YZmWDNMuJaLOCSU15VUBLDOYVlwZKnIONRSkkLIUFSNYVDQ-p6iySuUZxiUFaQrgOJui2zF3691XD6HTmyaU0LbGguuDVoSJjAgqorz5V1KF4x2YHYaSC45zdRjmQjKuhsTrP3Dlem_jv2gpYxRRjEZ0N6LSuxA81Hrrm43xO02wHsrUQ5l6LDPqq1E3APAr98sfO3iY0A</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>Kwan, C.</creator><creator>Lewis, F.L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20001101</creationdate><title>Robust backstepping control of nonlinear systems using neural networks</title><author>Kwan, C. ; Lewis, F.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-16f7121f25dbe43a02d59a2675efeb1b88c6d4106d2109bd3d97300c2e8abe503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adaptive control</topic><topic>Adaptive control systems</topic><topic>Backstepping</topic><topic>Control systems</topic><topic>Dynamical systems</topic><topic>Error correction</topic><topic>Neural networks</topic><topic>Nonlinear control systems</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Programmable control</topic><topic>Regression</topic><topic>Robots</topic><topic>Robust control</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwan, C.</creatorcontrib><creatorcontrib>Lewis, F.L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kwan, C.</au><au>Lewis, F.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust backstepping control of nonlinear systems using neural networks</atitle><jtitle>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</jtitle><stitle>TSMCA</stitle><date>2000-11-01</date><risdate>2000</risdate><volume>30</volume><issue>6</issue><spage>753</spage><epage>766</epage><pages>753-766</pages><issn>1083-4427</issn><issn>2168-2216</issn><eissn>1558-2426</eissn><eissn>2168-2232</eissn><coden>ITSHFX</coden><abstract>A controller is proposed for the robust backstepping control of a class of general nonlinear systems using neural networks (NNs). A tuning scheme is proposed which can guarantee the boundedness of tracking error and weight updates. Compared with adaptive backstepping control schemes, we do not require the unknown parameters to be linear parametrizable. No regression matrices are needed, so no preliminary dynamical analysis is needed. One salient feature of our NN approach is that there is no need for the off-line learning phase. Three nonlinear systems, including a one-link robot, an induction motor, and a rigid-link flexible-joint robot, were used to demonstrate the effectiveness of the proposed scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/3468.895898</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4427
ispartof IEEE transactions on systems, man and cybernetics. Part A, Systems and humans, 2000-11, Vol.30 (6), p.753-766
issn 1083-4427
2168-2216
1558-2426
2168-2232
language eng
recordid cdi_proquest_miscellaneous_28565079
source IEEE Xplore
subjects Adaptive control
Adaptive control systems
Backstepping
Control systems
Dynamical systems
Error correction
Neural networks
Nonlinear control systems
Nonlinear dynamics
Nonlinear systems
Programmable control
Regression
Robots
Robust control
Tuning
title Robust backstepping control of nonlinear systems using neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A24%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20backstepping%20control%20of%20nonlinear%20systems%20using%20neural%20networks&rft.jtitle=IEEE%20transactions%20on%20systems,%20man%20and%20cybernetics.%20Part%20A,%20Systems%20and%20humans&rft.au=Kwan,%20C.&rft.date=2000-11-01&rft.volume=30&rft.issue=6&rft.spage=753&rft.epage=766&rft.pages=753-766&rft.issn=1083-4427&rft.eissn=1558-2426&rft.coden=ITSHFX&rft_id=info:doi/10.1109/3468.895898&rft_dat=%3Cproquest_RIE%3E27684594%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885071942&rft_id=info:pmid/&rft_ieee_id=895898&rfr_iscdi=true