Robust backstepping control of nonlinear systems using neural networks

A controller is proposed for the robust backstepping control of a class of general nonlinear systems using neural networks (NNs). A tuning scheme is proposed which can guarantee the boundedness of tracking error and weight updates. Compared with adaptive backstepping control schemes, we do not requi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man and cybernetics. Part A, Systems and humans man and cybernetics. Part A, Systems and humans, 2000-11, Vol.30 (6), p.753-766
Hauptverfasser: Kwan, C., Lewis, F.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A controller is proposed for the robust backstepping control of a class of general nonlinear systems using neural networks (NNs). A tuning scheme is proposed which can guarantee the boundedness of tracking error and weight updates. Compared with adaptive backstepping control schemes, we do not require the unknown parameters to be linear parametrizable. No regression matrices are needed, so no preliminary dynamical analysis is needed. One salient feature of our NN approach is that there is no need for the off-line learning phase. Three nonlinear systems, including a one-link robot, an induction motor, and a rigid-link flexible-joint robot, were used to demonstrate the effectiveness of the proposed scheme.
ISSN:1083-4427
2168-2216
1558-2426
2168-2232
DOI:10.1109/3468.895898