10-hydroxycamptothecin-loaded starch-based microcapsules with the stepwise responsive release strategy for targeted controlled release

Controlled and accurate drug release at the target site have been the focus of research. Especially in cancer therapy, economical, convenient and accurate delivery strategies could help to reduce the toxic effects of drugs on normal tissues and improve drug availability. In the study, glutathione (G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2023-12, Vol.252, p.126424-126424, Article 126424
Hauptverfasser: Meng, Qingye, Zhong, Shuangling, Wang, Jia, Gao, Yan, Cui, Xuejun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Controlled and accurate drug release at the target site have been the focus of research. Especially in cancer therapy, economical, convenient and accurate delivery strategies could help to reduce the toxic effects of drugs on normal tissues and improve drug availability. In the study, glutathione (GSH)-responsive microcapsules (FA-RSMCs) were prepared by sonochemical method based on thiolated modified starch. 10-Hydroxycamptothecin (HCPT) was designed as a reactive oxygen species (ROS)-responsive polyprodrug (polyHCPT), which was loaded into the core of the microcapsules to obtain stepwise released drug delivery carriers. In the tumor microenvironment, FA-RSMCs first triggered GSH-responsive cleavage to release polyHCPT, followed by ROS-responsive cleavage of polyHCPT to release intact HCPT drug molecules. The results of experiments in simulated tumor microenvironment showed that FA-RSMCs exhibited good cascade-response release properties in vitro. It exhibited good anti-tumor ability and protection of normal cells in cytotoxicity in vitro. This strategy enhanced the accuracy and safety of targeted delivery of HCPT via microcapsules, which has potential for clinical application.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2023.126424