Resistance Training Intensity Prescription Methods Based on Lifting Velocity Monitoring

Resistance training intensity is commonly quantified as the load lifted relative to an individual's maximal dynamic strength. This approach, known as percent-based training, necessitates evaluating the one-repetition maximum (1RM) for the core exercises incorporated in a resistance training pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of sports medicine 2024-04, Vol.45 (4), p.257-266
1. Verfasser: Ramos, Amador García
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Resistance training intensity is commonly quantified as the load lifted relative to an individual's maximal dynamic strength. This approach, known as percent-based training, necessitates evaluating the one-repetition maximum (1RM) for the core exercises incorporated in a resistance training program. However, a major limitation of rigid percent-based training lies in the demanding nature of directly testing the 1RM from technical, physical, and psychological perspectives. A potential solution that has gained popularity in the last two decades to facilitate the implementation of percent-based training involves the estimation of the 1RM by recording the lifting velocity against submaximal loads. This review examines the three main methods for prescribing relative loads (%1RM) based on lifting velocity monitoring: (i) velocity zones, (ii) generalized load-velocity relationships, and (iii) individualized load-velocity relationships. The article concludes by discussing a number of factors that should be considered for simplifying the testing procedures while maintaining the accuracy of individualized L-V relationships to predict the 1RM and establish the resultant individualized %1RM-velocity relationship: (i) exercise selection, (ii) type of velocity variable, (iii) regression model, (iv) number of loads, (v) location of experimental points on the load-velocity relationship, (vi) minimal velocity threshold, (vii) provision of velocity feedback, and (viii) velocity monitoring device.
ISSN:0172-4622
1439-3964
DOI:10.1055/a-2158-3848