Using generative models for handwritten digit recognition

We describe a method of recognizing handwritten digits by fitting generative models that are built from deformable B-splines with Gaussian "ink generators" spaced along the length of the spline. The splines are adjusted using a novel elastic matching procedure based on the expectation maxi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 1996-06, Vol.18 (6), p.592-606
Hauptverfasser: Revow, M., Williams, C.K.I., Hinton, G.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 606
container_issue 6
container_start_page 592
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 18
creator Revow, M.
Williams, C.K.I.
Hinton, G.E.
description We describe a method of recognizing handwritten digits by fitting generative models that are built from deformable B-splines with Gaussian "ink generators" spaced along the length of the spline. The splines are adjusted using a novel elastic matching procedure based on the expectation maximization algorithm that maximizes the likelihood of the model generating the data. This approach has many advantages: 1) the system not only produces a classification of the digit but also a rich description of the instantiation parameters which can yield information such as the writing style; 2) the generative models can perform recognition driven segmentation; 3) the method involves a relatively small number of parameters and hence training is relatively easy and fast; and 4) unlike many other recognition schemes, it does not rely on some form of pre-normalization of input images, but can handle arbitrary scalings, translations and a limited degree of image rotation. We have demonstrated that our method of fitting models to images does not get trapped in poor local minima. The main disadvantage of the method is that it requires much more computation than more standard OCR techniques.
doi_str_mv 10.1109/34.506410
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28562262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>506410</ieee_id><sourcerecordid>26369307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-cda7878993c2d07fb700c198b6c70135bc995096e7cadd39f76a71eded75159a3</originalsourceid><addsrcrecordid>eNqF0D1PwzAYBGALgUQpDKxMmZAYUl7HsR2PqOJLqsRCZ8ux3wSjNC62C-LfU5SKlemGe3TDEXJJYUEpqFtWLziImsIRmVHFVMk4U8dkBlRUZdNUzSk5S-kdgNYc2IyodfJjX_Q4YjTZf2KxCQ6HVHQhFm9mdF_R54xj4XzvcxHRhn702YfxnJx0Zkh4ccg5WT_cvy6fytXL4_PyblVaVrNcWmdkIxulmK0cyK6VAJaqphVWAmW8tUpxUAKlNc4x1UlhJEWHTnLKlWFzcj3tbmP42GHKeuOTxWEwI4Zd0lXDRVWJ6n8omFAM5B7eTNDGkFLETm-j35j4rSno3xc1q_X04t5eTdYj4p87lD_qDmwm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26369307</pqid></control><display><type>article</type><title>Using generative models for handwritten digit recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Revow, M. ; Williams, C.K.I. ; Hinton, G.E.</creator><creatorcontrib>Revow, M. ; Williams, C.K.I. ; Hinton, G.E.</creatorcontrib><description>We describe a method of recognizing handwritten digits by fitting generative models that are built from deformable B-splines with Gaussian "ink generators" spaced along the length of the spline. The splines are adjusted using a novel elastic matching procedure based on the expectation maximization algorithm that maximizes the likelihood of the model generating the data. This approach has many advantages: 1) the system not only produces a classification of the digit but also a rich description of the instantiation parameters which can yield information such as the writing style; 2) the generative models can perform recognition driven segmentation; 3) the method involves a relatively small number of parameters and hence training is relatively easy and fast; and 4) unlike many other recognition schemes, it does not rely on some form of pre-normalization of input images, but can handle arbitrary scalings, translations and a limited degree of image rotation. We have demonstrated that our method of fitting models to images does not get trapped in poor local minima. The main disadvantage of the method is that it requires much more computation than more standard OCR techniques.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/34.506410</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Character recognition ; Computer vision ; Deformable models ; Handwriting recognition ; Image generation ; Image recognition ; Image segmentation ; Ink ; Optical character recognition software ; Optical noise</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1996-06, Vol.18 (6), p.592-606</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-cda7878993c2d07fb700c198b6c70135bc995096e7cadd39f76a71eded75159a3</citedby><cites>FETCH-LOGICAL-c343t-cda7878993c2d07fb700c198b6c70135bc995096e7cadd39f76a71eded75159a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/506410$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/506410$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Revow, M.</creatorcontrib><creatorcontrib>Williams, C.K.I.</creatorcontrib><creatorcontrib>Hinton, G.E.</creatorcontrib><title>Using generative models for handwritten digit recognition</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>We describe a method of recognizing handwritten digits by fitting generative models that are built from deformable B-splines with Gaussian "ink generators" spaced along the length of the spline. The splines are adjusted using a novel elastic matching procedure based on the expectation maximization algorithm that maximizes the likelihood of the model generating the data. This approach has many advantages: 1) the system not only produces a classification of the digit but also a rich description of the instantiation parameters which can yield information such as the writing style; 2) the generative models can perform recognition driven segmentation; 3) the method involves a relatively small number of parameters and hence training is relatively easy and fast; and 4) unlike many other recognition schemes, it does not rely on some form of pre-normalization of input images, but can handle arbitrary scalings, translations and a limited degree of image rotation. We have demonstrated that our method of fitting models to images does not get trapped in poor local minima. The main disadvantage of the method is that it requires much more computation than more standard OCR techniques.</description><subject>Character recognition</subject><subject>Computer vision</subject><subject>Deformable models</subject><subject>Handwriting recognition</subject><subject>Image generation</subject><subject>Image recognition</subject><subject>Image segmentation</subject><subject>Ink</subject><subject>Optical character recognition software</subject><subject>Optical noise</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqF0D1PwzAYBGALgUQpDKxMmZAYUl7HsR2PqOJLqsRCZ8ux3wSjNC62C-LfU5SKlemGe3TDEXJJYUEpqFtWLziImsIRmVHFVMk4U8dkBlRUZdNUzSk5S-kdgNYc2IyodfJjX_Q4YjTZf2KxCQ6HVHQhFm9mdF_R54xj4XzvcxHRhn702YfxnJx0Zkh4ccg5WT_cvy6fytXL4_PyblVaVrNcWmdkIxulmK0cyK6VAJaqphVWAmW8tUpxUAKlNc4x1UlhJEWHTnLKlWFzcj3tbmP42GHKeuOTxWEwI4Zd0lXDRVWJ6n8omFAM5B7eTNDGkFLETm-j35j4rSno3xc1q_X04t5eTdYj4p87lD_qDmwm</recordid><startdate>19960601</startdate><enddate>19960601</enddate><creator>Revow, M.</creator><creator>Williams, C.K.I.</creator><creator>Hinton, G.E.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19960601</creationdate><title>Using generative models for handwritten digit recognition</title><author>Revow, M. ; Williams, C.K.I. ; Hinton, G.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-cda7878993c2d07fb700c198b6c70135bc995096e7cadd39f76a71eded75159a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Character recognition</topic><topic>Computer vision</topic><topic>Deformable models</topic><topic>Handwriting recognition</topic><topic>Image generation</topic><topic>Image recognition</topic><topic>Image segmentation</topic><topic>Ink</topic><topic>Optical character recognition software</topic><topic>Optical noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Revow, M.</creatorcontrib><creatorcontrib>Williams, C.K.I.</creatorcontrib><creatorcontrib>Hinton, G.E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Revow, M.</au><au>Williams, C.K.I.</au><au>Hinton, G.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using generative models for handwritten digit recognition</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1996-06-01</date><risdate>1996</risdate><volume>18</volume><issue>6</issue><spage>592</spage><epage>606</epage><pages>592-606</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>We describe a method of recognizing handwritten digits by fitting generative models that are built from deformable B-splines with Gaussian "ink generators" spaced along the length of the spline. The splines are adjusted using a novel elastic matching procedure based on the expectation maximization algorithm that maximizes the likelihood of the model generating the data. This approach has many advantages: 1) the system not only produces a classification of the digit but also a rich description of the instantiation parameters which can yield information such as the writing style; 2) the generative models can perform recognition driven segmentation; 3) the method involves a relatively small number of parameters and hence training is relatively easy and fast; and 4) unlike many other recognition schemes, it does not rely on some form of pre-normalization of input images, but can handle arbitrary scalings, translations and a limited degree of image rotation. We have demonstrated that our method of fitting models to images does not get trapped in poor local minima. The main disadvantage of the method is that it requires much more computation than more standard OCR techniques.</abstract><pub>IEEE</pub><doi>10.1109/34.506410</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 1996-06, Vol.18 (6), p.592-606
issn 0162-8828
1939-3539
language eng
recordid cdi_proquest_miscellaneous_28562262
source IEEE Electronic Library (IEL)
subjects Character recognition
Computer vision
Deformable models
Handwriting recognition
Image generation
Image recognition
Image segmentation
Ink
Optical character recognition software
Optical noise
title Using generative models for handwritten digit recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A50%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20generative%20models%20for%20handwritten%20digit%20recognition&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Revow,%20M.&rft.date=1996-06-01&rft.volume=18&rft.issue=6&rft.spage=592&rft.epage=606&rft.pages=592-606&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.506410&rft_dat=%3Cproquest_RIE%3E26369307%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26369307&rft_id=info:pmid/&rft_ieee_id=506410&rfr_iscdi=true