Using generative models for handwritten digit recognition
We describe a method of recognizing handwritten digits by fitting generative models that are built from deformable B-splines with Gaussian "ink generators" spaced along the length of the spline. The splines are adjusted using a novel elastic matching procedure based on the expectation maxi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 1996-06, Vol.18 (6), p.592-606 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 606 |
---|---|
container_issue | 6 |
container_start_page | 592 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 18 |
creator | Revow, M. Williams, C.K.I. Hinton, G.E. |
description | We describe a method of recognizing handwritten digits by fitting generative models that are built from deformable B-splines with Gaussian "ink generators" spaced along the length of the spline. The splines are adjusted using a novel elastic matching procedure based on the expectation maximization algorithm that maximizes the likelihood of the model generating the data. This approach has many advantages: 1) the system not only produces a classification of the digit but also a rich description of the instantiation parameters which can yield information such as the writing style; 2) the generative models can perform recognition driven segmentation; 3) the method involves a relatively small number of parameters and hence training is relatively easy and fast; and 4) unlike many other recognition schemes, it does not rely on some form of pre-normalization of input images, but can handle arbitrary scalings, translations and a limited degree of image rotation. We have demonstrated that our method of fitting models to images does not get trapped in poor local minima. The main disadvantage of the method is that it requires much more computation than more standard OCR techniques. |
doi_str_mv | 10.1109/34.506410 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28562262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>506410</ieee_id><sourcerecordid>26369307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-cda7878993c2d07fb700c198b6c70135bc995096e7cadd39f76a71eded75159a3</originalsourceid><addsrcrecordid>eNqF0D1PwzAYBGALgUQpDKxMmZAYUl7HsR2PqOJLqsRCZ8ux3wSjNC62C-LfU5SKlemGe3TDEXJJYUEpqFtWLziImsIRmVHFVMk4U8dkBlRUZdNUzSk5S-kdgNYc2IyodfJjX_Q4YjTZf2KxCQ6HVHQhFm9mdF_R54xj4XzvcxHRhn702YfxnJx0Zkh4ccg5WT_cvy6fytXL4_PyblVaVrNcWmdkIxulmK0cyK6VAJaqphVWAmW8tUpxUAKlNc4x1UlhJEWHTnLKlWFzcj3tbmP42GHKeuOTxWEwI4Zd0lXDRVWJ6n8omFAM5B7eTNDGkFLETm-j35j4rSno3xc1q_X04t5eTdYj4p87lD_qDmwm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26369307</pqid></control><display><type>article</type><title>Using generative models for handwritten digit recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Revow, M. ; Williams, C.K.I. ; Hinton, G.E.</creator><creatorcontrib>Revow, M. ; Williams, C.K.I. ; Hinton, G.E.</creatorcontrib><description>We describe a method of recognizing handwritten digits by fitting generative models that are built from deformable B-splines with Gaussian "ink generators" spaced along the length of the spline. The splines are adjusted using a novel elastic matching procedure based on the expectation maximization algorithm that maximizes the likelihood of the model generating the data. This approach has many advantages: 1) the system not only produces a classification of the digit but also a rich description of the instantiation parameters which can yield information such as the writing style; 2) the generative models can perform recognition driven segmentation; 3) the method involves a relatively small number of parameters and hence training is relatively easy and fast; and 4) unlike many other recognition schemes, it does not rely on some form of pre-normalization of input images, but can handle arbitrary scalings, translations and a limited degree of image rotation. We have demonstrated that our method of fitting models to images does not get trapped in poor local minima. The main disadvantage of the method is that it requires much more computation than more standard OCR techniques.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/34.506410</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Character recognition ; Computer vision ; Deformable models ; Handwriting recognition ; Image generation ; Image recognition ; Image segmentation ; Ink ; Optical character recognition software ; Optical noise</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1996-06, Vol.18 (6), p.592-606</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-cda7878993c2d07fb700c198b6c70135bc995096e7cadd39f76a71eded75159a3</citedby><cites>FETCH-LOGICAL-c343t-cda7878993c2d07fb700c198b6c70135bc995096e7cadd39f76a71eded75159a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/506410$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/506410$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Revow, M.</creatorcontrib><creatorcontrib>Williams, C.K.I.</creatorcontrib><creatorcontrib>Hinton, G.E.</creatorcontrib><title>Using generative models for handwritten digit recognition</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>We describe a method of recognizing handwritten digits by fitting generative models that are built from deformable B-splines with Gaussian "ink generators" spaced along the length of the spline. The splines are adjusted using a novel elastic matching procedure based on the expectation maximization algorithm that maximizes the likelihood of the model generating the data. This approach has many advantages: 1) the system not only produces a classification of the digit but also a rich description of the instantiation parameters which can yield information such as the writing style; 2) the generative models can perform recognition driven segmentation; 3) the method involves a relatively small number of parameters and hence training is relatively easy and fast; and 4) unlike many other recognition schemes, it does not rely on some form of pre-normalization of input images, but can handle arbitrary scalings, translations and a limited degree of image rotation. We have demonstrated that our method of fitting models to images does not get trapped in poor local minima. The main disadvantage of the method is that it requires much more computation than more standard OCR techniques.</description><subject>Character recognition</subject><subject>Computer vision</subject><subject>Deformable models</subject><subject>Handwriting recognition</subject><subject>Image generation</subject><subject>Image recognition</subject><subject>Image segmentation</subject><subject>Ink</subject><subject>Optical character recognition software</subject><subject>Optical noise</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqF0D1PwzAYBGALgUQpDKxMmZAYUl7HsR2PqOJLqsRCZ8ux3wSjNC62C-LfU5SKlemGe3TDEXJJYUEpqFtWLziImsIRmVHFVMk4U8dkBlRUZdNUzSk5S-kdgNYc2IyodfJjX_Q4YjTZf2KxCQ6HVHQhFm9mdF_R54xj4XzvcxHRhn702YfxnJx0Zkh4ccg5WT_cvy6fytXL4_PyblVaVrNcWmdkIxulmK0cyK6VAJaqphVWAmW8tUpxUAKlNc4x1UlhJEWHTnLKlWFzcj3tbmP42GHKeuOTxWEwI4Zd0lXDRVWJ6n8omFAM5B7eTNDGkFLETm-j35j4rSno3xc1q_X04t5eTdYj4p87lD_qDmwm</recordid><startdate>19960601</startdate><enddate>19960601</enddate><creator>Revow, M.</creator><creator>Williams, C.K.I.</creator><creator>Hinton, G.E.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19960601</creationdate><title>Using generative models for handwritten digit recognition</title><author>Revow, M. ; Williams, C.K.I. ; Hinton, G.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-cda7878993c2d07fb700c198b6c70135bc995096e7cadd39f76a71eded75159a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Character recognition</topic><topic>Computer vision</topic><topic>Deformable models</topic><topic>Handwriting recognition</topic><topic>Image generation</topic><topic>Image recognition</topic><topic>Image segmentation</topic><topic>Ink</topic><topic>Optical character recognition software</topic><topic>Optical noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Revow, M.</creatorcontrib><creatorcontrib>Williams, C.K.I.</creatorcontrib><creatorcontrib>Hinton, G.E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Revow, M.</au><au>Williams, C.K.I.</au><au>Hinton, G.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using generative models for handwritten digit recognition</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1996-06-01</date><risdate>1996</risdate><volume>18</volume><issue>6</issue><spage>592</spage><epage>606</epage><pages>592-606</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>We describe a method of recognizing handwritten digits by fitting generative models that are built from deformable B-splines with Gaussian "ink generators" spaced along the length of the spline. The splines are adjusted using a novel elastic matching procedure based on the expectation maximization algorithm that maximizes the likelihood of the model generating the data. This approach has many advantages: 1) the system not only produces a classification of the digit but also a rich description of the instantiation parameters which can yield information such as the writing style; 2) the generative models can perform recognition driven segmentation; 3) the method involves a relatively small number of parameters and hence training is relatively easy and fast; and 4) unlike many other recognition schemes, it does not rely on some form of pre-normalization of input images, but can handle arbitrary scalings, translations and a limited degree of image rotation. We have demonstrated that our method of fitting models to images does not get trapped in poor local minima. The main disadvantage of the method is that it requires much more computation than more standard OCR techniques.</abstract><pub>IEEE</pub><doi>10.1109/34.506410</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 1996-06, Vol.18 (6), p.592-606 |
issn | 0162-8828 1939-3539 |
language | eng |
recordid | cdi_proquest_miscellaneous_28562262 |
source | IEEE Electronic Library (IEL) |
subjects | Character recognition Computer vision Deformable models Handwriting recognition Image generation Image recognition Image segmentation Ink Optical character recognition software Optical noise |
title | Using generative models for handwritten digit recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A50%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20generative%20models%20for%20handwritten%20digit%20recognition&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Revow,%20M.&rft.date=1996-06-01&rft.volume=18&rft.issue=6&rft.spage=592&rft.epage=606&rft.pages=592-606&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.506410&rft_dat=%3Cproquest_RIE%3E26369307%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26369307&rft_id=info:pmid/&rft_ieee_id=506410&rfr_iscdi=true |