Using generative models for handwritten digit recognition
We describe a method of recognizing handwritten digits by fitting generative models that are built from deformable B-splines with Gaussian "ink generators" spaced along the length of the spline. The splines are adjusted using a novel elastic matching procedure based on the expectation maxi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 1996-06, Vol.18 (6), p.592-606 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe a method of recognizing handwritten digits by fitting generative models that are built from deformable B-splines with Gaussian "ink generators" spaced along the length of the spline. The splines are adjusted using a novel elastic matching procedure based on the expectation maximization algorithm that maximizes the likelihood of the model generating the data. This approach has many advantages: 1) the system not only produces a classification of the digit but also a rich description of the instantiation parameters which can yield information such as the writing style; 2) the generative models can perform recognition driven segmentation; 3) the method involves a relatively small number of parameters and hence training is relatively easy and fast; and 4) unlike many other recognition schemes, it does not rely on some form of pre-normalization of input images, but can handle arbitrary scalings, translations and a limited degree of image rotation. We have demonstrated that our method of fitting models to images does not get trapped in poor local minima. The main disadvantage of the method is that it requires much more computation than more standard OCR techniques. |
---|---|
ISSN: | 0162-8828 1939-3539 |
DOI: | 10.1109/34.506410 |