An approach to durable PVDF cantilevers with highly conducting PEDOT/PSS (DMSO) electrodes
Bimorph cantilevers were fabricated using the piezoelectric polymer [poly(vinylidenefluoride), PVDF, β phase] for the active layers and the highly conducting polymer [poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate), PEDOT/PSS] treated with a dimethyl sulfoxide (DMSO) solvent for the electr...
Gespeichert in:
Veröffentlicht in: | Sensors and actuators. A. Physical. 2005-06, Vol.121 (2), p.373-381 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bimorph cantilevers were fabricated using the piezoelectric polymer [poly(vinylidenefluoride), PVDF, β phase] for the active layers and the highly conducting polymer [poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate), PEDOT/PSS] treated with a dimethyl sulfoxide (DMSO) solvent for the electrodes. The PVDF films were modified so as to have high adhesion at the interface between the PVDF and the PEDOT/PSS (DMSO) film by using an ion-assisted-reaction (IAR) method. A diffusion barrier was formed on the PEDOT/PSS (DMSO) surface after the IAR treatment. The barrier on the IAR treated electrode prevented the epoxy from penetrating into the PEDOT/PSS (DMSO) film, while the adhesive penetrated into the untreated electrode. In order to confirm the penetration of the epoxy adhesive into the IAR treated PEDOT/PSS (DMSO), X-ray photoelectron spectroscopy (XPS) spectra and scanning electron microscopy (SEM) images were analyzed. The surface resistance of the IAR treated electrodes was measured with a 4-point probe. The tip displacement of the cantilevers was measured at a resonance frequency, and the deformation of the PVDF film with the IAR treated PEDOT/PSS (DMSO) electrodes was found to be higher than that with PEDOT/PSS or inorganic electrodes at the same input voltages. The cantilevers made with indium tin oxide (ITO) or platinum (Pt) electrodes became damaged after operating the devices at a high frequency or a high input power. The PVDF cantilevers made with the PEDOT/PSS (DMSO) electrodes were found to be electrically and mechanically durable when operating at both high input voltage and high frequency. |
---|---|
ISSN: | 0924-4247 1873-3069 |
DOI: | 10.1016/j.sna.2005.03.005 |